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a b s t r a c t

W.K. Estes often championed an approach to model development whereby an existing model was
augmented by the addition of one or more free parameters to account for additional psychological
mechanisms. Following this same approach we utilized Estes’ (1950) own augmented learning equations
to improve the plausibility of a win-stay-lose-shift (WSLS)model that we have used inmuch of our recent
work. We also improved the plausibility of a basic reinforcement-learning (RL) model by augmenting its
assumptions. Estes also championed models that assumed a comparison between multiple concurrent
cognitive processes. In line with this, we develop a WSLS–RL model that assumes that people have
tendencies to staywith the sameoption or switch to a different option following trialswith relatively good
(‘‘win’’) or bad (‘‘lose’’) outcomes, and that the tendencies to stay or shift are adjusted based on the relative
expected value of each option. Comparisons of simulations of the WSLS–RL model with data from three
different decision-making experiments suggest that the WSLS–RL provides a good account of decision-
making behavior. Our results also support the assertion that human participants weigh both the overall
valence of the previous trial’s outcome and the relative value of each option during decision-making.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

The influence of W.K. Estes’ work on the fields of Mathemati-
cal and Cognitive Psychology cannot be overstated. His pioneering
work on verbal conditioning, which would later come to be known
as probability learning, presaged work in reinforcement learning
and reward-based decision-making that is extremely popular to-
day. Central to Estes’ work was the goal of explaining behavior in
mathematical terms that could be formally modeled. He viewed
the development and application of mathematical models of psy-
chological phenomena as ‘‘a critical step in moving from descrip-
tions of phenomena in ordinary language to representations in a
theoretical plane’’ (Estes, 2002).
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Another central theme in Estes’ work was the notion of multi-
ple concurrent processes in cognition (Estes, 1997, 2002; Estes &
Da Polito, 1967; Maddox & Estes, 1996, 1997). He discussed this
idea in much of his work on decision-making, recognition, and
category-learning and made several attempts to formally model
learning and memory processes by assuming that a comparison
was made between the output of multiple concurrent cognitive
processes, and the output of this comparison was what ultimately
led to a response. The notion of multiple concurrent processes is a
perennial theme in experimental psychology, and Esteswas among
those who championed this approach (Sloman, 1996; Smith & De-
coster, 2000; Wason & Evans, 1975).

Much of our own recent work has centered on comparing fits of
twodifferent types ofmodels to decision-makingdata: associative-
based Reinforcement Learning (RL) models, and heuristic, or
rule-based Win-Stay-Lose-Shift (WSLS) models (Cooper, Worthy,
Gorlick, & Maddox, 2013; Worthy, Hawthorne, & Otto, 2013; Wor-
thy & Maddox, 2012; Worthy, Otto, & Maddox, 2012). RL models
have perhaps been the most popular models of decision-making
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over the past several decades and have been used to describe be-
havior in a number of different decision-making tasks (Erev & Roth,
1998; Frank, Seeberger, & O’Reilly, 2004; Sutton & Barto, 1998;
Yechiam & Busemeyer, 2005). WSLS models have also been pop-
ular for quite some time, but have typically only been applied to
data frombinary choice experiments (Goodnow&Pettigrew, 1955;
Medin, 1972; Novak & Sigmund, 1993; Otto, Taylor, & Markman,
2011; Steyvers, Lee, & Wagenmakers, 2009). Our recent work has
demonstrated thatWSLSmodels can often provide equally good or
superior fits compared to RLmodels for data from awide variety of
decision-making tasks (Worthy, Hawthorne et al., 2013; Worthy &
Maddox, 2012; Worthy et al., 2012).

In the current work we modify our WSLS model by utilizing
equations first developed by Estes in hisworkmodeling probability
learning in the 1950s (Estes, 1957, 2002; Estes & Straughan, 1954).
The modification significantly improves the fit of our WSLS model
and allows the WSLS model to assume that tendencies to stay fol-
lowing a win or shift following a loss change over time. We also
test an augmented version of a basic RL model. The basic RL model
assumes that participants track the recency-weighted average re-
wards they receivewhen they select each option to determine each
option’s expected reward values. The recency-weighted averages,
or expected reward values for each option, are then compared to
determine the probability of selecting each option. The augmented
version of the RLmodel, allows for the additional assumptions that
participants may assign reward credit to options that were chosen
in the recent past and that expected rewards for each option de-
cay, or are ‘‘forgotten’’ as they are selected less often and. Recent
work has demonstrated that adding these assumptions to the basic
RLmodel can significantly improve the fit (Bogacz, McClure, Li, Co-
hen, &Montague, 2007; Daw, O’Doherty, Dayan, Seymour, &Dolan,
2006; Erev & Roth, 1998; Gureckis & Love, 2009; Howard-Jones,
Bogacz, Yoo, Leonards, & Demetriou, 2010; Sutton & Barto, 1998).

We then combine the WSLS and RL models into a WSLS–RL
Comparison model of decision-making inspired by Estes’ later at-
tempts to developmodels of cognition that assumedmultiple con-
current processes. The combined dual process model assumes:
(a) that people have tendencies to stay with the same option or
shift to a different option following trials with good (relative win)
or bad (relative loss) outcomes (based on the WSLS model’s as-
sumptions), and (b) that the tendencies to stay or shift are adjusted
based on the relative value of each option (based on the RLmodel’s
assumptions). Thus, people have tendencies to stay or switch on
the next trial based on the overall outcome valence of that trial rel-
ative to the previous trial, and these tendencies are adjusted based
on the value of the reward they expect to receive from each choice
option. Themodel assumes that people are more likely to stay on a
‘win’ trial or shift on a ‘loss’ trial (WSLS), and they are more likely
to stay-with or shift-to options with higher expected values than
options with lower expected values (RL). The benefit of fitting a
dual-process comparison model is that we can evaluate whether
participants consider both the valence of the last outcome (WSLS)
and relative value of each option (RL) to make decisions on each
trial, rather than just the valence or the relative value.

Thus, the approach we take here is to augment twomodels that
have been very successful in describing decision-making behavior
by adding additional mechanisms. This is a common approach that
was championed by Estes (1994):

‘‘A standard, and very powerful, procedure that is available once
we have a model that provides a good fit to a set of data is to aug-
ment the model by adding one additional mechanism or process
of interest (often, but not necessarily, accomplished by adding one
free parameter). . . . It is hard to overestimate the power of this tech-
nique for gaining evidence about mechanisms and processes that
cannot be directly observed’’.
In the following sectionswe first present the RL andWSLSmod-
els used as components in the WSLS–RL dual-process model, in-
cluding the modification to our previous instantiation of the WSLS
model based on Estes’ early work in modeling probability learning
(Estes, 1957; Estes & Straughan, 1954), and themodifications to the
basic RL model to allow expected reward values to decay and for
reward credit to be given to options chosen in the recent past. We
then fit the dual-process WSLS–RL model to the data from three
experiments and evaluate the degree to which weight is given to
the valence of the prior outcome (WSLS) versus the relative value
of each option (RL). We also simulate the model using best-fitting
parameter values from participants in our experiments and com-
pare the observed behavior of participants to that predicted by the
WSLS–RL model. Our analysis included both a comparison of the
proportion of times participants, and the model, select the most
advantageous option over the course of the experiment, and how
frequently participants, and the model, ‘stay’ by picking the same
option that was selected on the previous trial, or ‘shift’ by picking a
different option than the one chosen on the previous trial. This al-
lows us to examine how themodel accounts for both tendencies to
select options with higher expected values and tendencies to stay
or shift to different options depending on the outcome of the pre-
vious trial.

1.1. RL model

In decision-making situations involving choice, RL models
assume that people develop Expected Values (EV) for each choice
option that represent the reward (or punishment) they expect
to receive following each choice. A probability for selecting each
option a on trial t is typically given by a Softmax rule which
provides an action selection probability for each option, a, based
on its EV relative to the EVs of all j options (Sutton & Barto, 1998):

P (at) =
e[γ ·EV a,t ]

n
j=1

e[γ ·EV j,t ]

. (1)

Here γ is an exploitation parameter that determines the degree to
which the option with the highest EV is chosen. As γ approaches
infinity the highest valued option is chosen more often, and as γ
approaches 0 all options are chosen equally often.

The basic RLmodel assumes that participants develop Expected
Values (EVs) for each option that represent the rewards they expect
to receive upon selecting each option. EVs for all options are
initialized at EV initial, a free parameter in themodel at the beginning
of the task, and updated only for the chosen option, i, according to
the following updating rule:

EV i,t+1 = EV i,t + α · [r (t) − EV i,t ]. (2)

Learning is modulated by a learning rate, or recency, parameter
(α), 0 ≤ α ≤ 1, that weighs the degree to which the model
updates the EVs for each option based on the prediction error
between the reward received (r(t)), and the current EV on trial
t . As α approaches 1 greater weight is given to the most recent
rewards in updating EVs, indicative of more active updating of
EVs on each trial, and as α approaches 0 rewards are given less
weight in updating EVs. When α = 0 no learning takes place, and
EVs are not updated throughout the experiment from their initial
starting points. This model has been used in a number of previous
studies to characterize choice behavior (e.g. Daw et al., 2006; Otto,
Markman, Gureckis, & Love, 2010; Worthy, Maddox, & Markman,
2007; Yechiam & Busemeyer, 2005). The basic assumption behind
RL models is that people probabilistically select options with
higher EVs.

In the current work we augment the basic RL model in two
ways. First, we allow themodel to assume that eligibility traces for
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recent actions determine the degree to which the credit for the re-
ward received on each trial is given to each option. Eligibility traces
assert that participants remember which options they have cho-
sen in the recent past, and that some of the credit from the reward
received on each trial goes to options chosen on previous trials,
rather than all of the credit going to the option thatwas just chosen
(Bogacz et al., 2007; Gureckis & Love, 2009; Sutton & Barto, 1998).
Each time an option is chosen the eligibility trace for that option (i)
is incremented according to:

λi,t = λi,t−1 + 1. (3)

EV s for all, j, options are then updated according to the following
updating rule:

EV j,t+1 = EV j,t + α · [r (t) − EV j,t ] · λj,t . (4)

On each trial, the eligibility trace, λj, for every option decays based
on an eligibility trace decay parameter, ζ (0 ≤ ζ ≤ 1):

λj,t+1 = λj,t · ζ . (5)

Eligibility traces are meant to assert that participants remember
which actions they have recently selected, and in this way recent
actions can be credited if they lead to increases in reward on fu-
ture trials. Higher decay parameter (ζ ) values indicate less decay
of memory traces for recent actions and more credit assignment
to options that have been frequently selected in the recent past.
The addition of eligibility traces to RL models has resulted in im-
provedmodel performance in a variety of tasks (Bogacz et al., 2007;
Gureckis & Love, 2009; Sutton & Barto, 1998).

The augmented RL model also allows the model to assume that
EVs for each option are forgotten, or decay as they are selected less
often (Howard-Jones et al., 2010). At the end of each trial the EVs
for all j options are updated according to:

EV j,t+1 = EV j,t · λ + (1 − λ)ε (6)

where λ (0 ≤ λ ≤ 1) represents the rate of decay, with smaller
values indicating faster decay, and ε represents the value to which
EVs converge if an option is not chosen. The addition of the
decay parameter to the model has provided a better fit to the
data in much recent work (e.g. Ahn, Busemeyer, Wagenmakers,
& Stout, 2008; Erev & Roth, 1998; Howard-Jones et al., 2010;
Worthy, Hawthorne et al., 2013). To summarize, on each trial
the chosen option’s eligibility trace is incremented to make the
chosen option more ‘‘eligible’’ for learning (Eq. (3)), EVs for all
options are updated based on the reward received (Eq. (4)), then
both eligibility traces and EVs for all options decay (Eqs. (5)–(6)),
and finally the RL model’s probability of selecting each option is
computed by comparing each options’s EV (Eq. (1)).

1.2. WSLS model

An alternative strategy to the RL strategy of probabilistically
selecting options expected to provide larger rewards is a WSLS
strategy (Novak & Sigmund, 1993; Otto et al., 2011; Steyvers et al.,
2009). WSLS is a rule-based strategy that has been shown to be
commonly used in binary outcome choice tasks (e.g. Otto et al.,
2011). Under this strategy, participants ‘stay’ by picking the same
option on the next trial if theywere rewarded, and ‘shift’ by picking
the other option on the next trial if they were not rewarded.

This strategy can be modeled for data from binary outcome
experiments like early work in probability learning (Estes &
Straughan, 1954), but it can also bemodeled for data fromdecision-
making tasks where participants receive varying amounts of
reward (or punishment) on each trial. In this more general form of
theWSLS model participants ‘‘stay’’ by picking the same option on
the next trial if the reward was equal to or larger than the reward
received on the previous trial (a ‘‘win’’ trial), or ‘‘shift’’ by selecting
the other option on the next trial if the reward received on the
current trial was smaller than the reward received on the previous
trial (a ‘‘lose’’ trial; Worthy & Maddox, 2012; Worthy et al., 2012).

The probabilities of staying following a ‘‘win’’ or shifting follow-
ing a ‘‘loss’’ are free parameters in the model. In a two-alternative
decision-making experiment the probability of staying with the
same option, a, on the next t trial (t + 1) if the reward, r , received
on the current trial is equal to or greater than the reward received
on the previous trial is:

P (at+1|choicet = a and r (t) ≥ r (t − 1)) = P (stay|win) . (7)

The probability of switching to another option following awin trial
is 1-P (stay|win).

The probability of shifting to the other option, b, on the next t
trial (t+1) if the reward, r , received on the current trial is less than
the reward received on the previous trial is:

P (bt+1|choicet = a and r (t) < r (t − 1)) = P (shift|loss) . (8)

The probability of staying with an option following a ‘‘loss’’ is
1-P (shift|loss).

We have fit this model to experimental data in several of our
recent studies, and it often provides a better fit than RL models
(Worthy, Hawthorne et al., 2013;Worthy&Maddox, 2012;Worthy
et al., 2012). However, one shortcoming of themodel is that it is not
a learningmodel because the best-fitting values of P (stay|win) and
P (shift|loss) are estimated over all trials, and these values do not
change throughout the experiment. It is reasonable to assume that
the probability of staying on a ‘‘win’’ trial or shifting on a ‘‘loss’’ trial
does not remain static over the course of the experiment.

In the early 1950s Estes encountered a similar situation when
extending his statistical model for simple associative learning
(Estes, 1950). In this model change in mean response probability
on reinforced trials is given by:

pt+1 = pt + θ(1 − pt). (9)

Here the probability of a response increases on the next trial if a
reward occurs on trial t , and θ performs a similar function that
the learning rate (α) parameter performs in Eqs. (2) and (4). On
unrewarded trials changes in mean response probability are given
by:

pt+1 = (1 − θ)pt . (10)

Here the probability of a response decreases on the next trial if a
reward does not occur on trial t .

We utilized a modified version of Eq. (8) to modify P (stay|win)
and P (shift|loss) on each trial based on whether the trial is a ‘‘win’’
or a ‘‘loss’’ trial. The modified WSLS model has six parameters:
P (stay|win)initial and P (shift|loss)initial, which represent the start-
ing values of P (stay|win) and P (shift|loss) , P (stay|win)final and
P (shift|loss)final, which represent the asymptotic ending values of
P (stay|win) and P (shift|loss), and θP(stay|win) and θP(lose|shift) which
determine howmuch P (stay|win) and P (shift|loss) change on each
trial.

If r (t) ≥ r (t − 1), then the trial is considered a ‘‘win’’ trial and
the following equation that is of the same form as Eq. (8) is used to
adjust P (stay|win):

P (stay|win)t+1 = P (stay|win)t + θP(stay|win)

× (P (stay|win)final − P (stay|win)t). (11)

If r (t) < r (t − 1), then the trial is considered a ‘‘loss’’ trial and

P (shift|loss)t+1 = P (shift|loss)t + θP(lose|shift)

× (P (shift|loss)final − P (shift|loss)t). (12)

Modifying the WSLS model by adding Eqs. (8) and (9) allows the
model to assume that participants’ tendencies to stay or shift
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on win and loss trials are modified throughout the experiment.
This modification of the WSLS model allows the model to assume
learning in that propensities to stay following a positive outcome
or switch following a negative outcome are not required to remain
static across all trials.

1.3. WSLS–RL model

RL andWSLSmodels can both capture behavior reasonablywell
in a variety of tasks. However, one possibility is that participants
consider both the overall valence of the outcome on the previous
trial (WSLS) and the relative value of each option (RL) to make de-
cisions on each trial. The RL-based process provides information
on the EV of each option relative to the EVs for all other options,
while the WSLS-based process provides information on the par-
ticipant’s general propensity to stay with the same option or shift
to a different option depending on whether the outcome was an
improvement or a decline compared to the outcome on the pre-
vious trial. Modeling either process alone may not adequately ac-
count for human decision-making behavior. It is likely that human
decision-making behavior involves a consideration of both the rel-
ative value of each option (RL) and the trend in rewards from trial
to trial (WSLS).

The WSLS–RL model combines these two assumptions by
assuming that the probability of selecting each option is affected by
both the valence of the prior outcome and the relative value of each
option. This assumption is accounted for by theWSLS–RLmodel by
adding the parameter κWSLS which weighs the degree to which the
WSLS model’s output is utilized in determining the probability of
selecting each j option:

P (jt) = P (jt)WSLS · κWSLS + P (jt)RL · (1 − κWSLS). (13)

This method of comparing the output from two separate models is
one suggested by Estes in some of his laterwork (Estes, 2002;Mad-
dox & Estes, 1996). In sum, the dual-process comparisonWSLS–RL
model has 13 free parameters, 6 for the RL-based process, 6 for the
WSLS-based process, and κWSLS which weights the output of each
process. The equations used for the WSLS–RL model are Eqs. (1),
(3)–(8), and (11)–(12).

In the experiments presented below we fit the WSLS–RL Com-
parison model to data from three decision-making experiments
that have quite different reward structures. We then examine the
best fitting parameters from fits to subjects’ data in our exper-
iments. If people consider both the valence of recent outcomes
(WSLS) and the relative value of each option then parameter esti-
mates for κWSLS should be near 0.50.We also simulate theWSLS–RL
model using best-fitting parameter estimates from participants in
each experiment and compare the behavior of our experiments to
that predicted by the model.

1.4. Overview of experiments

In Experiment 1participants performabinary outcomedecision
making task where they receive either three points or one point
each time they select one of two options. One option provides the
higher payoff (three points) 70% of the time and the other option
provides the higher payoff only 30% of the time. In Experiment 2
participants perform a similar two choice task where they earn
points on each trial and attempt tomaximize the cumulative points
earned. In this task one option provides an average payoff of 65
points on each trial, while the other option provides an average
payoff of only 55 points on each trial. There is a standard deviation
of 10 points around the average payoff for each option, and thus the
task requires learning which option is better despite a high degree
of noise in the rewards given by each option.

Experiments 1 and 2 have choice-history independent re-
ward structures because the payoffs given on each trial are not
influenced by the previous choices the participant hasmade. In Ex-
periment 3 participants perform a choice-history dependent task
where the payoffs are affected by the proportion of times partici-
pants have selected each option over the previous ten trials. One
option, the Increasing option, causes future rewards for both op-
tions to increase, while the other option, the Decreasing option,
causes future rewards for both options to decrease. The Increas-
ing option is the optimal choice, but it always provides a smaller
immediate reward compared to the decreasing option. Thus, the
Decreasing option initially appears more rewarding despite being
disadvantageous in the long run. Choice-history dependent tasks
like these have recently become popular in examining how people
avoid immediately rewarding options in favor of options thatmax-
imize long-term cumulative reward (Bogacz et al., 2007; Gureckis
& Love, 2009; Otto et al., 2010; Worthy, Gorlick, Pacheco, Schnyer,
& Maddox, 2011).

2. Experiment 1

In Experiment 1 participants performed a two-choice binary
outcome decision-making task where their goal was to maximize
the cumulative points gained over the course of the experiment.

2.1. Method

2.1.1. Participants
Twenty young adults from the University of Texas at Austin

participated in the experiment as partial fulfillment of a course
requirement.

2.1.2. Materials and procedure
Participants performed the experiment on a PC using Matlab

software with Psychtoolbox (Version 2.54). At the beginning of the
task participants were told that they would select from one of two
cards on each trial and that they would receive either one or three
points upon each selection. The Advantageous deck gave three
points with a probability of 0.7 and one point with a probability
of 0.3, while the Disadvantageous deck gave three points with a
probability of 0.3 and one point with a probability of 0.7.

On each trial participants were told to select one of the two
options and were given as long as they wished to make a selection.
Feedback was provided 500 ms after each response and lasted for
2000 ms before the next trial began. Participants performed 250
trials of the task. They were given a goal of trying to earn 600
points over the course of the task which is equivalent to earning
the higher payoff (three points) on 70% of the trials.

2.2. Results

We fit the WSLS–RL model individually to each participant’s
data by maximizing log-likelihood. Table 1 lists the average best-
fitting parameter values across all participants. For several pa-
rameters the distribution of best-fitting values across participants
wasmarkedly non-normal. The average best-fitting κWSLS was 0.48,
which suggests that participants weighed the valence of the previ-
ous trial’s outcome and the relative expected value of each option
roughly equally. The distribution of best-fitting values for this pa-
rameter was more normal compared to other parameters from the
model. The median of κWSLS parameter estimates was 0.47 and the
1st and 3rd quartiles were 0.39 and 0.60, respectively.

To examine the ability of theWSLS–RLmodel to account for par-
ticipants’ decision-making behavior we simulated themodel using
sets of best-fitting parameter values from participants in our ex-
periment. We used the parameter values that best fit our partic-
ipants’ data for the simulated data sets. We generated 1000 data
sets using parameter combinations that were sampled with re-
placement from the best-fitting parameter combinations for par-
ticipants in our experiment. Thus, we randomly sampled a com-
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Table 1
Average parameter values for the WSLS–RL model in Experiment 1.

Mean parameter value

α 0.40 (0.35, 0.11, 0.62)
γ 6.82 (3.82, 2.36, 9.57)
EV initial 2.21 (0.91, 1.08, 3.00)
ζ 0.30 (0.31, 0.00, 0.47)
λ 0.85 (0.16, 0.70, 0.99)
ε 2.26 (0.85, 1.47, 3.00)
P (stay|win)initial 0.23 (0.32, 0.00, 0.34)
P (shift|loss)initial 0.60 (0.47, 0.00, 1.00)
θP(stay|win) 0.31 (0.42, 0.01, 0.63)
θP(lose|shift) 0.33 (0.44, 0.03, 0.88)
P (stay|win)final 0.92 (0.22, 0.97, 1.00)
P (shift|loss)final 0.37 (0.42, 0.00, 0.80)
κWSLS 0.48 (0.19, 0.39, 0.60)

Note: Numbers in parentheses represent standard deviations followed by the first
and third quartiles.

bination parameters that provided the best fit to one participant’s
data and used those parameter values to perform one simulation
of the task. We generated 1000 simulated data sets in this man-
ner. This is the same approach that we have followed in recent
work from our lab (Worthy, Hawthorne et al., 2013; Worthy et al.,
2012; Worthy, Pang, & Byrne, 2013). This allowed us to compute
the proportion of trials that the WSLS–RL model predicted partic-
ipants would select the Advantageous option as well as the pre-
dicted number of trials that participants would ‘stay’ by picking
the same option that they had picked on the previous trial.

Fig. 1(a) plots the average of the predicted and observed pro-
portion of trials that participants selected the Advantageous deck
in 25-trial blocks of the task. Error bars represent 95% confidence
intervals. A repeated measures ANOVA showed a significant linear
trend, F(1, 19) = 20.07, p < 0.001, partial η2

= 0.51, and a sig-
nificant quadratic trend F(1, 19) = 7.52, p < 0.05, partial η2

=

0.28. Across all trials, participants selected the Advantageous deck
on 72% of trials and earned an average of 548 points. Fig. 1(b) plots
the average number of ‘stay’ trials in 25-trial blocks. A repeated
measures ANOVA showed a significant linear trend, F(1, 19) =

33.60, p < 0.001, partial η2
= 0.64, and a significant quadratic

trend F(1, 19) = 17.26, p < 0.01, partial η2
= 0.48. Overall, the

WSLS–RL model provided a good account of behavior in the task.
The predicted proportion of Advantageous deck selections were
within the 95% confidence intervals for the observed choices from
our participants in all ten 25-trial blocks in the task. The same was
true for the predicted number of trials that participants selected
the same option that they had selected on the previous trial.

2.3. Discussion

Behaviorally, and across all participants, there was evidence of
‘‘probabilitymatching’’ where participants tended to select the Ad-
vantageous deck on about the same proportion of trials that deck
gave the higher reward on (72% compared to 70% rate of higher
payoff). Participants also tended to persevere, or select the same
option that they had on the previous trial more as the experiment
progressed. The WSLS–RL model’s predicted proportion of Advan-
tageous deck selections and stay trials corresponded closely to the
proportion of times participants selected the Advantageous deck
and perseveredwith the same option that they had selected on the
previous trial over the course of the experiment.

Average estimated κWSLS parameter values were near 0.50
which suggests that decisions were made on the basis of both the
expected value of each option and the overall valence of the pre-
vious trial’s outcome. By combining the assumption that partici-
pants select options based on their relative expected values with
the assumption that participants have a general tendency to stay
or switch to a different option based on the outcome of the previ-
ous trial theWSLS–RLmodel was able to provide a good account of
participants’ behavior.
a

b

Fig. 1. (a) Predicted and observed proportion of trials that participants selected
the advantageous option on in Experiment 1. (b) Number of predicted and observed
proportion stay trials in Experiment 1. Stay trials were trials where the same option
was selected that had been selected on the previous trial. Predictions were based
on 1000 simulations of the WSLS–RL model. Error bars represent 95% confidence
intervals.

Fig. 2. Reward structure for Experiment 2.

3. Experiment 2

In Experiment 2 participants performed a decision-making ex-
periment that shared many similarities with Experiment 1. How-
ever, the rewards in this taskwere continuously valued, rather than
binary. Fig. 2 plots the rewards given by the Advantageous and Dis-
advantageous options on each trial. As stated above, mean payoffs
of 65 and 55 points were given for the Advantageous and Disad-
vantageous decks, respectively. There was a standard deviation of
10 points around each deck’s mean payoff.

3.1. Method

3.1.1. Participants
Twenty-three participants from the Texas A&M University

community participated in the experiment in partial fulfillment of
a course requirement.
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Table 2
Average parameter values for the WSLS–RL model in Experiment 2.

Mean parameter value

α 0.32 (0.34, 0.03, 0.49)
γ 4.97 (3.95, 0.33, 8.34)
EV initial 63.69 (22.55, 42.91, 89.52)
ζ 0.33 (0.33, 0.00, 0.63)
λ 0.84 (0.24, 0.82, 1.00)
ε 57.77 (24.88, 30 0.50, 84.87)
P (stay|win)initial 0.27 (0.37, 0.00, 0.46)
P (shift|loss)initial 0.68 (0.41, 0.36,1.00)
θP(stay|win) 0.30 (0.41, 0.03, 0.62)
θP(lose|shift) 0.28 (0.39, 0.03, 0.34)
P (stay|win)final 0.78 (0.33, 0.77,1.00)
P (shift|loss)final 0.28 (0.38, 0.00, 0.46)
κWSLS 0.46 (0.17, 0.33, 0.57)

Note: Numbers in parentheses represent standard deviations followed by the first
and third quartiles.

3.1.2. Materials and procedure
Participants performed the experiment on a PC using Matlab

software with Psychtoolbox (Version 2.54). At the beginning of the
task participants were told that they would select from one of two
cards on each trial and that they would receive between 1 and 100
points. On each trial participants were told to select one of the two
options and were given as long as they wished to make a selection.
Feedback was provided 500 ms after each response and lasted for
2000 ms before the next trial began. They were given a goal of
collecting at least 16,000 points over the course of the experiment
which could be reached by selecting the Advantageous deck on
approximately 80% of the trials.

3.2. Results

Table 2 shows the average best-fitting parameter values for the
WSLS–RL model. As in Experiment 1, many of the parameter esti-
mates were non-normally distributed and the average best-fitting
κWSLS was near 0.50 (M = 0.46), which suggests that participants
weighed the valence of the previous trial’s outcome and the rela-
tive expected value of each option roughly equally. The distribution
of best-fitting values for this parameter was more normal com-
pared to other parameters from the model. The median of κWSLS
parameter estimates was 0.49 and the 1st and 3rd quartiles were
0.33 and 0.57, respectively.

We used the same bootstrapping method from Experiment 1 to
simulate 1000 data sets for the WSLS–RL model using best-fitting
parameter combinations from our participants. Fig. 3(a) shows
the observed proportion of Advantageous deck selections over the
course of the task alongwith predictions from theWSLS–RLmodel.
A repeated measures ANOVA showed a significant quadratic trend
F(1, 22) = 28.12, p < 0.001, partial η2

= 0.56. Across all trials,
participants selected the Advantageous deck on 73% of trials and
earned an average of 15,762 points. Fig. 3(b) shows the predicted
and observed number of stay trials over the course of the exper-
iment. A repeated measures ANOVA showed a significant linear
trend F(1, 22) = 21.04, p < 0.001, partial η2

= 0.49, and a
significant quadratic trend, F(1, 22) = 11.54, p < 0.01, partial
η2

= 0.34. As the task progressed learned to select the advanta-
geous deck more frequently and they also switched options less
frequently. The WSLS–RL model was able to account for both Ad-
vantageous deck selections and the number of trials that partici-
pants persevered by staying with the same option over the course
of the task. Estimates for both of these measures were within 95%
confidence intervals estimated from participants’ data for all ten
25-trial blocks in the experiment.

3.3. Discussion

Participants selected the Advantageous deckmore than the Dis-
advantageous deck, indicating a learned preference for the optimal
a

b

Fig. 3. (a) Predicted and observed proportion of trials that participants selected
the advantageous option on in Experiment 2. (b) Number of predicted and observed
proportion stay trials in Experiment 2. Stay trials were trials where the same option
was selected that had been selected on the previous trial. Predictions were based
on 1000 simulations of the WSLS–RL model. Error bars represent 95% confidence
intervals.

deck in the task. Participants also tended to switch decks on suc-
cessive trials less often as the task progressed. Parameter estimates
suggested that participants’ behavior was affected by both the rel-
ative expected value of each option and by the overall valence of
the outcome on the previous trial. The WSLS–RL model was able
to capture both the observed proportion of Advantageous deck se-
lections and the number of trials that participants persevered by
selecting the same option.

4. Experiment 3

Toprovide a third test of theWSLS–RLmodel’s ability to account
for participants’ decision-making behavior we had participants
performing a dynamic, choice-history dependent decision-making
task where the rewards given by each option depended on the
recent choices participants had made. As in Experiments 1 and 2,
participants performed a two-choice decision-making task where
they were asked to pick from one of two decks of cards and
maximize the cumulative points gained throughout the task.

The reward structure for the current task is shown in Fig. 4.
The Increasing option provides a smaller immediate payoff on any
given trial, but selecting this option causes participants to move
to the right along the x-axis, and, as a result, earn higher payoffs
regardless of which option they pick. In contrast, the Decreasing
option always provides a larger immediate payoff, but selecting it
causes participants to move to the left along the x-axis. Repeated
selection of the Increasing option will lead to a reward of 80 points
on each trial, while repeated selection of theDecreasing optionwill
lead to a reward of only 40 points on each trial. Thus, the Increasing
option is the advantageous choice for the task, while the Decreas-
ing option is the disadvantageous choice. Good performance in the
task requires forgoing the Decreasing option’s larger immediate
payoff in favor of the Increasing option’s better long-term value.
Thus, the task differs from the tasks in Experiments 1 and 2 where
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Fig. 4. Reward structure for the choice-history dependent task in Experiment 3.
As indicated on the x-axis, the rewards provided by each option were determined
by the number of times participants had selected the increasing option over the
previous ten trials.

the payoffs were not affected by the choice-history of the partici-
pant, and the optimal choice maximized both immediate and cu-
mulative reward.

4.1. Method

4.1.1. Participants
Twenty-three young adults from the Texas A&M University

community participated in the experiment as partial fulfillment of
a course credit.

4.1.2. Materials and procedure
Participants performed the experiment on PCs using Matlab

software with Psychtoolbox (Version 2.54). At the beginning of the
task participants were told that they would select from one of two
cards on each trial and that they would receive between 1 and
100 points. On each trial participants were told to select one of
the two options and were given as long as they wished to make a
selection. Feedback was provided 500 ms after each response and
lasted for 2000 ms before the next trial began. They were given
a goal of collecting at least 18,000 points over the course of the
experiment which could be reached by selecting the Increasing
deck on approximately 80% of the trials.

4.2. Results

Table 3 shows the average best-fitting parameter values for the
WSLS–RLmodel. As in Experiments 1 and 2,many of the parameter
estimates were non-normally distributed and the average best-
fitting κWSLS was near 0.50 (M = 0.54), which suggests that
participants weighed the valence of the previous trial’s outcome
and the relative expected value of each option roughly equally.
The distribution of best-fitting values for this parameter was more
normal compared to other parameters from themodel. Themedian
of κWSLS parameter estimateswas 0.56 and the 1st and 3rd quartiles
were 0.36 and 0.71, respectively.

We used the same bootstrapping method used in Experiments
1 and 2 to simulate 1000 data sets for the WSLS–RL model us-
ing best-fitting parameter combinations from our participants.
Fig. 5(a) shows the observed proportion of Advantageous deck se-
lections over the course of the task alongwith predictions from the
WSLS–RLmodel. A repeatedmeasuresANOVA showed a significant
linear trend F(1, 22) = 13.47, p < 0.01, partial η2

= 0.38, and a
significant quadratic trend F(1, 22) = 8.45, p < 0.01, partial η2

=

0.28. Across all trials, participants selected the Advantageous deck
on 52% of trials and earned an average of 15,174 points. Fig. 5(b)
shows the predicted and observed number of stay trials over the
course of the experiment. A repeated measures ANOVA showed a
significant linear trend F(1, 22) = 15.91, p < 0.01, partial η2

=

Table 3
Average parameter values for the WSLS–RL model in Experiment 3.

Mean parameter value

α 0.54 (0.40, 0.10, 0.97)
γ 4.98 (3.52, 0.92, 7.89)
EV initial 59.81 (26.45, 30.47, 88.36)
ζ 0.58 (0.31, 0.43, 0.85)
λ 0.83 (0.25, 0.84, 0.97)
ε 49.62 (29.91, 32.46, 62.91)
P (stay|win)initial 0.38 (0.40, 0.00, 0.73)
P (shift|loss)initial 0.55 (0.42, 0.09, 1.00)
θP(stay|win) 0.20 (0.31, 0.02, 0.17)
θP(lose|shift) 0.33 (0.38, 0.04, 0.51)
P (stay|win)final 0.83 (0.33, 0.87, 1.00)
P (shift|loss)final 38 (0.35, 0.04, 0.66)
κWSLS 0.54 (0.22, 0.36, 0.71)

Note: Numbers in parentheses represent standard deviations followed by the first
and third quartiles.

a

b

Fig. 5. (a) Predicted and observed proportion of trials that participants selected
the advantageous option on in Experiment 3. (b) Number of predicted and observed
proportion stay trials in Experiment 3. Stay trials were trials where the same option
was selected that had been selected on the previous trial. Predictions were based
on 1000 simulations of the WSLS–RL model. Error bars represent 95% confidence
intervals.

0.42, and a significant quadratic trend, F(1, 22) = 6.85, p < 0.05,
partial η2

= 0.24. As the task progressed learned to select the ad-
vantageous deck more frequently and they also switched options
less frequently. The WSLS–RL model was able to account for both
Advantageous deck selections and the number of trials that partic-
ipants persevered by staying with the same option over the course
of the task. Estimates for both of these measures were within 95%
confidence intervals estimated from participants’ data for every
block in the experiment, except for the first blockwhere themodel
over-predicted the proportion of Advantageous deck selections.

4.3. Discussion

The dual process WSLS–RL model once again provided a good
account for both the proportion of times participants selected the
Advantageous deck and how frequently participants stayed with
the same option over consecutive trials. However, the model over-
predicted the proportion of Increasing option selections early in
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the task. Initially, participants tended to select the disadvantageous
Decreasing more frequently than the Increasing option. However,
as the task progressed participants learned to select the Advanta-
geous deck. In this respect, behavior in the choice-history depen-
dent task used in Experiment 3was slightly different than behavior
in Experiments 1 and 2 where participants selected the Advanta-
geous deckmore often throughout the entire task. In Experiment 3
participants initially showed a bias toward the more immediately
rewarding Decreasing option but learned to avoid it in favor of the
Increasing option which provided more long-term cumulative re-
ward.

On average, best-fitting κWSLS parameter valueswere again near
0.50 (M = 0.54) which suggests that the relative expected value
of each option and the overall valence of the outcome on the pre-
vious trial affected decision-making behavior. One thing to note
is that, on average, the decay parameter for eligibility traces (ζ )
were higher in Experiment 3 (M = 0.58) than in Experiments 1
(M = 0.30) and 2 (M = 0.33). This is likely because eligibil-
ity traces are necessary for the model to value the Increasing op-
tion, which consistently provides smaller immediate rewards, over
the Decreasing option (Gureckis & Love, 2009; Neth, Sims, & Gray,
2006). The addition of eligibility traces allow the model to assign
reward credit to the Increasing option if it has been frequently cho-
sen in the recent past and led to improvement in rewards for both
options. Thus, in Experiment 3 eligibility traces slower decay rates
for eligibility traces allow the model to assume that participants
have greater memory for options chosen in the recent past which
affect rewards on future trials. In thisway themodel learns to value
the Increasing option over the Decreasing option.

5. General discussion

In three decision-making experiments that had qualitatively
different reward structures the WSLS–RL dual process compari-
son model consistently provided a good account of participants’
decision-making behavior. The model was able to account for both
how often participants selected the Advantageous option and how
often participants stayed with the same option over consecutive
trials. This supports the assumption of the model that participants
consider both the valence of the most recent outcome, as assumed
byWSLS models, and the relative value of each option, as assumed
by RL models, when making decisions. These are two psycholog-
ically plausible processes that mediate decision-making behavior
and the dual process model makes the equally plausible assump-
tion that participants consider both the valence of the previous
outcome and the relative value of each option during decision-
making. Thus, the dual processWSLS–RL Comparisonmodel adds a
missing component to each single-processmodel to better account
for human behavior.

The weight given to the valence of the most recent outcome
and the relative value of each option, which was estimated by
the κWSLS parameter in the WSLS–RL model, was roughly equal
in all three experiments. This suggests that participants may give
roughly equal weight to the output of the valence of the reward
on the last trial and the relative outcome of each option in a va-
riety of decision-making contexts. Future work could investigate
whether different experimentalmanipulations or individual differ-
ences among participants affect the degree to which participants’
weigh the valence of the most recent outcome versus the relative
value of each option.

The addition of the updating equations for the WSLS compo-
nent of themodel thatwere based onEstes’modification to his own
learning model in the 1950s (Estes, 1957, 2002; Estes & Straughan,
1954) allowed the model to assume that tendencies to stay fol-
lowing a win or shift following a loss can change over time. The
parameter estimates for P(stay|win)initial, P(stay|win)final, P(shift|
loss)initial, and P(shift|loss)final, support the assumption that tenden-
cies to stay or shift do indeed change over time. In each experiment
the probability of staying on a win trial was greater at the end of
the experiment than at the beginning, and the probability of shift-
ing following a loss trial was smaller at the end of the experiment
than at the beginning. Our analysis of the number of times partici-
pants stayedwith the same option over the course of the task are in
linewith the parameter estimates from theWSLS–RLmodel in that,
overall, participants tended to stay with the same option more of-
ten as the course progressed. Thismodification, directly inspired by
Estes’ work in the 1950s, also allowed the WSLS component of the
model to assume that the stay and shift probabilities on each trial
were adjusted based on feedback. Although the WSLS model can
account for a wide range of data in decision-making experiments
(Otto et al., 2011; Worthy & Maddox, 2012; Worthy et al., 2012;
Worthy, Pang et al., 2013), it is very likely that ‘‘stay’’ and ‘‘shift’’
probabilities are dynamic and change throughout the course of the
experiment.

Our approach of augmenting models that already provide a
good account to experimental data by the addition of parameters
that provide additional assumptions about behavior was an ap-
proach often taken and encouraged by Bill Estes in his own work
(Estes, 1994, 2002). The result provides a powerful framework for
research to test theories regarding what influences learning and
decision-making behavior. Our approach has featured two promi-
nent models of decision-making, but future work could test alter-
native augmentations along similar lines. There have been numer-
ous different augmentations to models that employ the basic RL
framework. Across a variety of domains researchers have fit RL
models that assume eligibility traces for recent actions (Bogacz
et al., 2007; Otto & Love, 2010; Sutton & Barto, 1998), attention
to recent trends (Kovach et al., 2012) and perseverative autocorre-
lation (Daw, Gershman, Seymour, Dayan, & Dolan, 2011), and this
list is far from exhaustive. Additionally, there may be better ways
to augments WSLS models. For example, the magnitudes of each
‘‘win’’ or ‘‘loss’’ could be considered when adjusted win-stay and
lose-shift probabilities. We have focused on simple instantiations
of the WSLS and RL-based processes in an attempt to isolate the
components of each, and provide the clearest and most transpar-
ent test of the dual-process WSLS–RL model that we developed.
Future work could test different augmentations of models that as-
sume similar processes, or use a similar approach in entirely differ-
ent domains. Such endeavors would be further testaments of the
enduring legacy and footprint W.K. Estes left on the fields of Cog-
nitive and Mathematical Psychology.
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