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A B S T R A C T

Recent work provides evidence for frequency effects during decision-making, where less-rewarding options that 
are presented more frequently are selected more often than more-rewarding options presented less frequently. 
This is predicted by the Decay but not the Delta reinforcement-learning (RL) model. The Decay model assumes 
that higher-frequency options are preferred because their past outcomes are more available in memory than 
those of lower-frequency options. However, most of this research has involved decision-making with gains, 
rather than losses. In loss-minimization scenarios, the Decay model predicts a reversed frequency effect because it 
assumes greater memory for losses, for the more frequently encountered alternatives. We tested this prediction in 
three experiments and found that the Decay model provides a very poor fit to data in loss-minimization scenarios. 
In Experiment 2, where participants tried to minimize their expenditures in a hypothetical shopping scenario, we 
observed a modest frequency effect. In Experiments 1 and 3, where participants were asked to minimize losses as 
points, without the hypothetical shopping scenario context, frequency effects were attenuated, but not reversed. 
These effects were best-accounted for by two novel models, the Prospect-Valence Prediction-Error Decay model 
(PVPE-Decay), which assumes relative rather than absolute processing of rewards, and the Delta-Uncertainty 
model which assumes aversiveness to less frequent options that are higher in uncertainty. These results dove
tail with recent work showing that people process reward outcomes in a context-dependent manner, and they 
suggest smaller losses can be perceived as relative gains if framed in familiar scenarios involving cost- 
minimization.

1. Introduction

There has been a long history in psychological research attempting to 
elucidate how people's decision-making strategies differ when the 
possible outcomes involve gains versus losses (Kahneman & Tversky, 
1979; Gonzalez, Dana, Koshino, & Just, 2005; Pang, Blanco, Maddox, & 
Worthy, 2017; Yechiam & Hochman, 2013; Zeif & Yechiam, 2022). 
Research on framing and reflection effects has shown that people often 
behave markedly different when the same decision-making problems are 
framed in terms of gain-maximization versus loss minimization (Fischer 
et al., 2008; Kühberger, 1995; Kwak & Huettel, 2018; Gallagher & 
Updegraff, 2012; Fagley & Miller, 1997). For example, the classic 
behavioral economics literature suggests that people tend to be 
risk-averse in the context of gains, but risk-seeking in the context of 
losses (Kahneman & Tversky, 1979; March, 1996), although other re
searchers have questioned this generality (Schneider & Lopes, 1986).

More recently, decision-making studies have uncovered intriguing 
frequency effects, where people preferred an option that is slightly lower 
in average reward value, if it has been presented more frequently than 
the higher-average reward value alternative (Don, Otto, Cornwall, 
Davis, & Worthy, 2019; Don & Worthy, 2022; Hu, Don, & Worthy, 
2025).1 However, this frequency-based preference has yet to be tested in 
loss contexts. Interestingly, a popular reinforcement learning (RL) 
model, the Decay model (Erev & Roth, 1998), which accurately predicts 
frequency effects in gain contexts, predicts a ‘reversed frequency effect’ 
under losses. That is, while frequently presented items tend to be favored 
in gain contexts, they may be avoided in loss contexts. In the current 
work, we examine whether this novel framing effect exists in decision- 
making when options are presented at unequal frequencies.

Previous research has shown that the Decay model correctly predicts 
an effect of reward frequency in both binary- and continuous-outcome 
tasks where all rewards were gains (Don et al., 2019; Hu et al., 2025). 

* Corresponding author at: Texas A&M University, 4235 TAMU College Station, TX 77845-4235, USA.
E-mail address: worthyda@tamu.edu (D.A. Worthy). 

1 We use the term ‘frequency effect’ rather than ‘mere exposure effect’ because the tasks demonstrating frequency effects have involved reward-based outcomes, 
rather than mere exposure. As stated by Zajonc (1974): “When stimulus presentation is accompanied by an opportunity of forming particular associative bonds, we no 
longer have conditions satisfying the ‘mere’ exposure hypothesis.’”
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This model assumes that reward values accumulate, leading to higher 
expected value estimates for more frequently presented alternatives 
(Erev & Roth, 1998; Worthy, Hawthorne and Otto, 2013). Following 
Estes (1976), who showed extensive effects of reward frequency, Don 
et al. (2019) conducted an experiment which clearly demonstrated the 
impact of unequal reinforcement frequencies. In this study, participants 
selected between options AB or CD on separate trials during training. 
Options A and C were the best in each pair, providing a reward on 65% 
and 75% of trials respectively. While option C had a higher average 
reward rate, option A was associated with more cumulative reward 
because there were twice as many AB trials as CD trials in the task. 
During a later test phase, participants selected from options A or C, and 
there was a bias toward option A, the more frequently presented alter
native, even though it had a lower objective reward value. This effect 
has been replicated using continuous rewards (Hu et al., 2025). There
fore, it was theorized that the Decay model effectively assumes that, 
when making a decision, people think of the previous rewards associated 
with each option (Don et al., 2019). More frequently presented items 
should be more available in memory, and those items will have a higher 
expected value because the memories of those past outcomes will 
accumulate, and more gains will be associated with them.

If cumulative rewarding experiences can make an option seem more 
valuable than less frequently rewarded alternatives, do repeated losses 
devalue frequently punished options more than those encountered less 
often? For example, does paying per use for a service (e.g., a gym or 
music app) feel more costly than a higher-priced monthly membership, 
even if the latter could be objectively more expensive for infrequent 
users? The Decay model makes an interesting prediction in these sce
narios that involve losses. As will be shown below, it predicts a reversed 
frequency effect, where the more frequently encountered item will be 
chosen less often because more losses are associated with that option. 
For the same reason that the Decay model predicts enhanced memory for 
previous rewards in a gains context, it also predicts enhanced memory 
for losses within a loss-minimization context. Knowing whether people 
show the same frequency effect under gains and losses is important 
because it helps us understand how people are remembering, or pro
cessing, past outcomes. People could process all the losses received as 
losses, or negative outcomes, which is assumed by the Decay model. 
Alternatively, they might process losses within their context, and view 
small losses as relative gains and large losses as relative losses (Brochard 
& Daunizeau, 2024; Rakow, Cheung, & Restelli, 2020). The experiments 
reported below will allow us to examine which of these two possibilities 
is supported by the data.

In addition to examining the predictions of the Decay RL model, we 
will also examine the predictions of six additional models. First, the 
Delta model (Sutton & Barto, 1998, 2018; Steingroever, Wetzels, & 
Wagenmakers, 2014), assumes that expected values are 
recency-weighted averages of the past outcomes associated with each 
alternative. Because the Delta model tracks average reward, it does not 
assume that options that are more frequently presented will be valued 
any more than less frequently presented alternatives. This model has 
been shown to provide a poorer account of frequency effects than the 
Decay model in tasks where the outcomes are gains (Don et al., 2019; 
Don & Worthy, 2022). We will also fit two variants of the Decay model 
that make different assumptions regarding how past outcomes are used 
to compute expected values for each alternative: The Decay-Win model 
(Hu & Worthy, n.d.) assumes that participants' behavior is guided by 
relative ‘wins,’ or better than average outcomes, while the Decay-Loss 
model assumes that participants attend to relative ‘losses,’ or worse 
than average outcomes.

The Delta, Decay, Decay-Win, and Decay-Loss models each contain 
two free parameters. We will also fit four additional models that are 
more complex versions of the four models listed above; each of these 
additional models contains four free parameters. The Prospect-Valence 
Delta (PVL-Delta) and Prospect-Valence Decay (PVL-Decay) models 
are extensions of the Delta and Decay models, respectively, that have 

two additional parameters that are motivated by Prospect Theory (Ahn, 
Busemeyer, Wagenmakers, & Stout, 2008; Steingroever, Wetzels, & 
Wagenmakers, 2013). These models include a shape parameter, which 
allows for discounting of the magnitude of rewards, and a loss-aversion 
parameter, which allows the model to give more weight to either gains 
or losses. The Prospect Valence Prediction-Error Decay (PVPE-Decay) 
model is a novel model we developed to include the Decay-Win and 
Decay-Loss models nested as special cases. A similar model was used in 
another recent paper from our lab, and it fit gambling task data much 
better than the Delta model (Don et al., 2022). The PVPE-Decay model 
includes a shape parameter, just like the PVL-Delta and PVL-Decay 
models, and it also has a parameter that weights the effects of positive 
versus negative prediction errors. The final model is the Delta- 
Uncertainty model. This model tracks the uncertainty associated with 
each option, which is operationalized as a combination of the variance 
in rewards provided by each option, and how often each option has been 
selected in the past (i.e. familiarity). The Delta-Uncertainty model is 
designed to be better equipped to account for frequency effects than the 
basic Delta model because it penalizes options that are higher in un
certainty. A key difference between the models is that the Delta, Decay, 
PVL-Delta, PVL-Decay and Delta-Uncertainty models all assume abso
lute, or context-free processing of reward outcomes, while the Decay- 
Win, Decay-Loss, and PVPE-Decay models all assume that rewards are 
processed in a relative manner, by being compared to the average reward 
provided across all outcomes. Comparing the fits of these two classes of 
models will allow us to determine whether losses are processed in an 
absolute or in a relative manner.

The models, along with their assumptions and predictions, will be 
detailed in the Model Formalisms section below.

1.1. Model formalisms

All eight models compute expected values for each alternative pre
sented in the task. These expected values are entered into the softmax 
rule shown in in Eq. 1 to determine each model's probability of selecting 
each j alternative on trial t: 

P
⃒
⃒Cj,t

⃒
⃒ =

eβ•EVj,t

∑N(j)

1
eβ•EVj,t

(1) 

Consistent with Yechiam and Ert (2007), β = 3c − 1; c ∈ (0, 5), 
where c is an inverse temperature parameter that modulates how often 
the option with the higher expected value is chosen. As c approaches 0, 
choices are more random, inversely, choices are weighted more heavily 
toward the choice with the highest expected value as c increases.

1.1.1. Basic learning models
We divide our set of models into Basic models which have two free 

parameters, and Extended models which have four. The first basic model 
is the Delta model, which assumes that the expected value (EV) is 
updated for each j option on each t trial according to Eq. 2: 

EVj,t+1 = EVj,t + α •
(
rt − EVj,t

)
• Ij (2) 

Where Ij is an indicator variable that is set to 1 if option j is chosen on 
trial t, and 0 otherwise. This formulation ensures that only the expected 
value for the chosen option is updated, and the other options, whether 
seen or not, are not updated. Alpha (α) is the learning rate, or recency 
parameter. Higher α values indicate greater weight to more recent 
outcomes. To reduce multicollinearity between the learning rate and 
inverse temperature parameters we limited the range of alpha to ∈
(0.01,0.99) in all of our simulations and model fits.

The next basic learning model is the Decay model. This model tracks 
changes in expected value, but instead of updating the expected value by 
the prediction error, the raw reward value is used (rt). On each trial, each 
j option will be modified by a decay parameter (A; A ∈ (0.01,0.99)) 
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regardless of whether the option was seen or chosen. Critically, this 
means that the expected value for each option will decay over time and 
only increase when a reward for that option is received. Thus, the more 
frequent the reward, the greater the expected value. The Decay rule is 
updated according to Eq. 3: 

EVj,t+1 = EVj,t • (1 − A)+ rt • Ij (3) 

Similar to Eq. 2, Ij, is an indicator variable that equals 1 if j is chosen, 
and zero otherwise. This means that all options decay toward zero on 
each trial, but the expected value of the chosen option is incremented by 
the reward given. As our simulations will confirm below, the Decay 
model predicts a bias toward more frequently presented options when 
gains are given, but a bias against more frequently presented options 
when losses are given.

The first new model we present is the Decay-Win model (Hu & 
Worthy, n.d.). This model is also a basic, two-parameter model, and it 
assumes that rewards are processed relative to other rewards given in the 
same context. To provide an estimate of the average reward provided 
across all options, this model tracks the recency-weighted average 
reward received on each trial according to Eq. 4: 

AVt+1 = AVt +A • (rt − AVt) (4) 

The Decay-Win model also assumes that only the valence of the 
outcome is used to guide choices, and specifically only the presence of 
positive outcomes. If the current reward is greater than the average 
reward (rt − AVt), then expected values are updated according to Eq. 5, 
with Ij equal to 1: 

EVj,t+1 = EVj,t • (1 − A)+1 • Ij (5) 

If the current reward is not greater than the average reward then the 
indicator variable, Ij, is set to 0; all expected values decay, but no ex
pected value is incremented unless the reward is greater than average. 
The Decay-Win model thus assumes that a trial is considered a ‘win’ if 
the reward surpasses a threshold of being larger than average. The 
model does not track any information about the specific magnitudes of 
the rewards provided, it simply tracks the number of positive outcomes 
associated with each option. The Decay-Win model makes the same 
predictions for tasks involving gains or losses. Unlike the standard Decay 
model, the Decay-Win model does not predict a reversed frequency ef
fect with losses but instead predicts a bias toward more frequently 
presented options in both gain and loss conditions.

The final Basic learning model, the Decay-Loss model assumes the 
opposite strategy of the Decay-Win model. Whereas the Decay-Win 
model tracks how often each option has provided a ‘win,’ or better 
than average reward, the Decay-Loss model tracks how often each op
tion has provided a ‘loss,’ or worse than average reward. If the current 
reward is less than the average reward provided by Eq. 4, then expected 
values are updated according to Eq. 6, with Ij equal to 1: 

EVj,t+1 = EVj,t • (1 − A) − 1 • Ij (6) 

If the current reward is not less than the average reward then the 
indicator variable, Ij, is set to 0; all expected values decay upwards to
ward zero, but no expected value is decremented unless the reward is 
less than average. Thus, the Decay-Loss model assumes a loss-avoidant 
strategy, whereas the Decay-Win model assumes a gain-seeking strategy.

1.1.2. Extended learning models
As stated above, we also fit four models that were extensions of the 

basic models. The PVL-Delta model is an extension of the Delta model 
that includes two additional parameters that allow the model to account 
for discounting of large magnitude rewards, and for greater attention to 
losses versus gains. Rather than use the actual reward received on each 
trial (rt) in Eq. 2, the PVL-Delta model transforms the outcome received 
on trial t into a representation of subjective utility (ut): 

ut =

{
rt

γ if rt ≥ 0
− λ|rt |

γ if rt < 0 (7) 

Here, the shape parameter γ (0 ≤ γ ≤ 1) determines the shape of the 
utility function. When γ = 1, all rewards are processed veridically, but 
as the shape parameter approaches 0 reward magnitudes are discounted. 
When γ = 0, all rewards are processed as the same amount (1), and the 
magnitude is completely disregarded. The loss aversion parameter λ (0 
≤ λ ≤ 5) allows for greater learning from losses or gains. When this 
parameter is set to 1, losses and gains receive equal weight, with values 
less than 1 indicating greater attention to gains than losses, and values 
greater than 1 indicating greater attention to losses than gains.

The utility is then entered into a Delta learning rule to update the 
expected value for the chosen option: 

EVj,t+1 = EVj,t + α •
(
ut − EVj,t

)
• Ij (8) 

As in Eq. 2, Ij, is an indicator variable that equals 1 if option j was 
chosen on trial t, and 0 otherwise.

The PVL-Decay model also uses Eq. 7 to compute the utility of each 
outcome. The utility is then entered into a decay rule according to: 

EVj,t+1 = EVj,t • (1 − A)+ ut • Ij (9) 

Eq. 9 is identical to Eq. 3 except that actual reward outcome is 
replaced with subjective utility (ut).

The third extended model, the PVPE-Decay model, is an extension of 
both the Decay-Win and Decay-Loss models, and each of these models 
are nested within the PVPE-Decay model as special cases. Like these 
simpler models, the PVPE-Decay model also assumes that rewards are 
processed relative to the overall average reward provided across all 
options, and the average value (AVt) is computed using Eq. 4. The AV is 
then used to compute the subjective utility of the outcome according to: 

ut =

{
(1 − wL) • (rt − AVt)

γ if (rt − AVt) ≥ 0
wL|(rt − AVt)|

γ if (rt − AVt) < 0 (10) 

This utility function is similar to the utility function for the PVL-Delta 
and PVL-Decay models, except that it uses relative reward (rt − AVt), 
rather than the actual reward (rt). Another difference is that this model 
uses a weight parameter for losses versus gains wL (0 ≤ wL ≤ 1). This 
allows the PVPE-Decay model to include the Decay-Win model nested as 
a special case when wL = 0 and γ = 0, and the Decay-Loss nested as a 
special case when wL = 1 and γ = 0.

Finally, the fourth extended model we used is the Delta-Uncertainty 
model. We fit this model because it is possible that frequency effects are 
due to lower uncertainty associated with the more frequent alternatives, 
compared to items encountered less often (Hu et al., 2025). This model 
learns expected values in the same way as the basic Delta model; how
ever, the prediction error on each trial is used to track the variance, or 
uncertainty in rewards for the chosen option. One additional free 
parameter, Unc0, represents the initial uncertainty in reward for each 
option. This parameter is used to initialize uncertainty values for each j 
option according to: 

UVj,0 = Unc2
0 (11) 

The uncertainty value for the chosen option is then updated on each 
trial according to: 

UVj,t+1 = UVj,t + α •
[(

rt − EVj,t
)2

− UVj,t

]
• Ij (12) 

In Eq. 12, the squared prediction error from the basic Delta model is 
used to updated the uncertainty associated with the chosen option. We 
allowed the initial uncertainty parameter to vary from 0.5 to 5, which is 
greater than the standard deviation of rewards for each option. There
fore, the UVs associated with each option will generally decrease as they 
are selected more frequently. The uncertainty values were then con
verted into uncertainty estimates by taking their square root, and 
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dividing by the number of times the chosen option had been selected: 

Uncj,t =

̅̅̅̅̅̅̅̅̅̅
UVj,t

√

̅̅̅̅̅̅nj,t
√ (13) 

Dividing by the number of times each option has been chosen, allows 
the model to further reduce uncertainty associated with more frequent 
options.

The uncertainty values were then subtracted from the expected 
values, with a free parameter, wUnc, weighting the degree to which the 
participant avoided options with high uncertainty: 

QVj,t = EVj,t − Uncj,t • wUnc (14) 

These Q-values were then used in Eq. 1, in the place of expected 
values. Given that these uncertainty values were usually smaller than 
one, we allowed this free parameter (wUnc) to vary between 0 and 1000 
to allow the model to give greater weight to uncertainty than to expected 
values when this parameter was large. When wUnc equals zero, the Delta- 
Uncertainty model is identical to the basic Delta model.

To summarize the Delta, Decay, PVL-Delta, PVL-Decay, and Delta- 
Uncertainty models all assume absolute, context-free processing of the 
gains or losses given by each option, while the Decay-Win, Decay-Loss, 
and PVPE-Decay models assume relative, or context-dependent pro
cessing where the outcomes provide by each option are processed 
relative to the overall average reward provided across all options. In the 
next section, we will show that the relative-reward processing models 
make similar predictions across gain-maximization and loss- 
minimization tasks; however, two of the absolute-reward processing 
models, the Decay and PVL-Decay models, predict a reversed effect of 
frequency under losses compared to gains. We will then present three 
experiments with human participants and evaluate which model pro
vides the best fit and post-hoc recovery of participants' behavior.

1.2. A priori simulations

We simulated each of the above models in a task that was modified 
from that of Don et al. (2019), under both gains and losses conditions. 
There were a total of four options that the simulated agent chose from on 
different trials, labeled options A-D. The rewards given by each option 
were continuous and drawn from normal distributions, with the mean 
reward values in the gains task for options A-D equal to [0.65, 0.35, 
0.75, 0.25]. The mean values for options A-D in the losses task were 
[− 0.35, − 0.65, − 0.25, − 0.75]. The values for the losses condition were 
simply the values from the gains condition subtracted by one. The 
standard deviation around the mean reward value was 0.43 for all op
tions. This value was calculated based on the standard deviation from 
the binomial distribution for option C, the highest valued option: (0.7 * 
0.3)^0.5 = 0.43. Using this value for the standard deviation around each 
mean value made the reward structure roughly equivalent to a 
continuous-rewards version of the binary-outcome task from Don et al. 
(2019), and was also implemented in Hu et al. (2025) and Hu & Worthy 
(n.d.).

For all models, expected values for all j options were initialized at the 
first reward or utility value given on trial 1. This restricted the initial 
expected values to be on the same scale as the rewards or utilities used to 
update the model's expected values on each trial. During training, the 
models selected from options AB or CD on different trials. There were 
100 AB trials, and 50 CD trials. The trial types were interspersed 
randomly for each simulation. During the test phase, the models selected 
from novel option pairs, CA, CB, AD, and BD, each for 25 trials. The CA 
test trials are of most interest because the models must choose between 
the two high-value options within each training pair. Although option A 
has a lower mean value of 0.65, it is selected more than option C, which 
has a higher average value of 0.75, in a binary outcome task (Don et al., 
2019; Don & Worthy, 2022).

We simulated each task 1000 times with each model, with parameter 

values randomly drawn from a uniform distribution across the ranges 
presented above. Fig. 1, shows the average proportion of C choices on 
the critical CA test phase trials, averaged across all simulations for each 
model.

The Delta and PVL-Delta models clearly predict a preference for the 
more rewarding option C, across both conditions. The Decay and PVL- 
Decay models predict fewer C, or more A choices in the gains condi
tion; however, as expected, these models predict more C choices in the 
losses condition. As described above, the Decay model predicts a fre
quency effect under gains, but a reversed frequency effect under losses, 
and the PVL-Decay model makes similar predictions. The Decay-Win 
model predicts a frequency effect across both the gains and losses con
ditions. In contrast, the Decay-Loss model predicts a reversed frequency 
effect in both gains and losses conditions, where the simulated agents 
consistently preferred option C over option A in both conditions, similar 
to the Delta and PVL-Delta models. Finally, the PVPE-Decay and Delta- 
Uncertainty models predict roughly equal choices of A and C, because 
the PVPE-Decay model is flexible enough to mimic both the Decay-Win 
and Decay-Loss models, and the Delta-Uncertainty model can mimic the 
Delta model if the weight to uncertainty is low, but it can also predict 
frequency effects if the weight to uncertainty is high.

2. Experiment 1

In Experiment 1, we ran participants in the two conditions simulated 
above to examine whether they displayed a reversed frequency effect in 
the losses condition, as predicted by the Decay model, or whether par
ticipants showed a similar frequency effect under both gains and losses, 
where they preferred the more frequently rewarded alternative during 
the test phase.

2.1. Method

2.1.1. Participants
We conducted an a priori power analysis using G*Power software 

(Kang, 2021) to estimate the appropriate sample size to conduct t-tests 
on the proportion of C choices made on the critical test trials between 
the gains and losses conditions. Assuming an effect size of d = 0.5, an 
alpha threshold of 0.01,2 we would need 96 participants in each con
dition for 80% power. Based on past studies from our lab, we reasoned 
that some participants may show little evidence of learning during the 
training phase, particularly in the loss-minimization conditions which 
are sometimes confusing to participants. Therefore, we planned to run 
approximately 120 participants in each condition to account for “noise” 
in the data from participants who did not sufficiently learn which 
choices were optimal during training.

Our final sample size was 252 participants. Participants were 
randomly assigned to one of the two between-subjects conditions, gains 
or losses: There were 120 participants in the Gains condition (83 fe
males, 35 males, 2 other), and 132 in the Losses condition (85 females, 
46 males, 1 other).

2.1.2. Materials and procedure
Participants performed the task on PC computers in a laboratory 

setting. They first completed a series of questionnaires which were 
added as part of a pilot study, and will not be analyzed here. These scales 
are listed and briefly described in the Supplemental Materials. 

2 We planned to conduct Bayesian t-tests, which are generally more conser
vative in rejecting the null hypothesis than frequentist t-tests with alpha = 0.05 
(Wetzels et al., 2011), therefore we used an alpha level of 0.01. We acknowl
edge that conducting a fully Bayesian power analysis would have been more 
appropriate, but we are unaware of any software similar to G*Power for 
Bayesian power analysis, and we felt conducting a frequentist power analysis in 
this manner suited our purpose.
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Participants then performed the main task. During the first 150 trials, 
referred to as the training phase participants selected from options A-B 
or from options C–D. In the gains condition, option A provided an 
average reward of 0.65 points, while option B had an average reward of 
only 0.35 points. Within the CD pair, option C was dominant over option 
D, with an average reward of 0.75 compared to 0.25 for D. Rewards were 
drawn on each trial from continuous normal distribution with a standard 
deviation of 0.43. This value was based on the standard deviation from a 
binomial distribution for option C (0.75 * 0.25)^0.5, and our goal was to 
create a continuous version of the binomial task used in Don et al. 
(2019). Thus, the average reward values and the variance are roughly 
equivalent to that in Don et al.'s, 2019 study, although we used 
continuously distributed, rather than binomial rewards in the present 
study. This reward structure has also been shown to produce regular 
frequency effects in gains contexts (Hu et al., 2025).

The losses conditions were created as analogues of the gains task, 
with average rewards for decks A-D equal to: − 0.35, − 0.65, − 0.25, 
− 0.75. The variance in rewards was the same as in the gains condition. 
Participants were told that they would lose points on most trials, and 
that their goal was to lose as few points as possible. It is important to 
note that gains and losses were sometimes given in both conditions, due 
to the high variance in rewards. Fig. 2 shows example screenshots from 
the experiment. Participants were allowed to make choices at their own 
pace, and they were not given information about how many trials were 
left in the experiment. They were only shown the outcome for the option 
selected on each trial; foregone outcomes were not presented.

Participants in the both conditions performed twice as many AB 
training trials as CD trials (100 compared to 50). AB and CD trials were 
randomly interspersed across training. In the transfer phase participants 
completed 25 trials of each of the remaining combinations of options: 
CA, CB, AD, and BD. These trial types were randomly interspersed across 
the 100-trial transfer phase. Feedback was given on each trial of the 
training phase, but for the test phase, participants were not shown how 
many points they earned. In the gains condition, participants were told 
that their job was to figure out which option within each pair was most 

rewarding. In the losses condition, participants were told that their job 
was to figure out which option gave the smallest losses. For the transfer 
phase, participants were told that they would not be shown how many 
points they received after each trial, but to try to pick the best option 
based on what they had learned so far. Participants were not given a 
specific goal, and they were not given monetary rewards in the task, but 
were simply asked to do their best to pick the most rewarding option.

2.1.3. Data analysis
We ran Bayesian general linear mixed-effects regression models to 

analyze the data using the R package brms (Bürkner, 2017). Brms pro
vides parameter estimates for both fixed and random effects. We 
examined the fixed-effect coefficient values from models where condi
tion variables (e.g. reward condition) were used as predictors for the 
proportion of optimal choices. We considered an effect to exist or be 
‘significant’ if the 95% highest credible interval (HCI) for the predictor 

Fig. 1. Predicted proportion of C choices on CA test phase trials for a priori simulations for each model. Black horizontal line indicates equal choices for options A 
and C.

Fig. 2. Example screenshots for the training and test phases of the experiment.
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did not include zero (Byrne et al., 2020; Nalborczyk, Batailler, Lœve
nbruck, Vilain, & Bürkner, 2019).

We also conducted Bayesian t-tests on the key dependent variables 
such as the proportion of C choices on the critical CA transfer trials. We 
used JASP software for our Bayesian analysis (jasp-stats.org; version 
0.17.2.1) using the default Cauchy prior (0.707). We report Bayes Fac
tors in terms of evidence supporting the alternate (BF10) hypothesis. A 
Bayes Factor (BF10) of 3 or more is considered to indicate moderate 
support for the alternate hypothesis, and a Bayes Factor (BF10) less than 
1/3 is considered moderate support for the null (Jeffreys, 1961; 
Wagenmakers et al., 2018), although Bayes Factors can be interpreted 
continuously on an odds scale. For example, a Bayes Factor (BF10) of 3 
suggests that the alternate hypothesis is three times more likely than the 
null hypothesis, given the data.3 Bayes Factors greater than 10 are 
considered strong support for the alternate hypothesis, and Bayes Fac
tors greater than 100 indicate extreme support (Jeffreys, 1961; 
Wagenmakers et al., 2018).

2.2. Results

We first computed the proportion of optimal choices during training, 
or the proportion of A and C choices in the AB and CD choice pairs, 
respectively. These are shown in Fig. 3a. We ran a Bayesian multilevel 
logistic regression model that predicted whether participants made the 
optimal choice on each trial (coded as 1 for optimal, 0 for not-optimal) 
based on condition, with random intercepts for each participant. There 
was a significant effect of reward type, b = − 0.42, SE = 0.12, 95% HCI =
[− 0.65, − 0.19], OR = 0.65, which suggests that learning was better in 
the gains compared to the losses condition. The odds ratio for selecting 
the optimal choice decreased by a factor of 0.66 for the losses compared 
to the gains condition. A similar model that included the interaction 
term between trial type (AB coded as 0; CD coded as 1) and condition 
indicated that there was a significant interaction, b = 0.20, SE = 0.05, 
95% HCI = [0.11, 0.30], OR = 1.21. This suggests that for participants in 
the losses condition, the odds of selecting the optimal choice increased 
by a factor of 1.21 on CD, compared to AB trials. This could have been 
due to the larger difference in average loss between options C and D than 
A and B, but it is notable that learning was equivalent for AB and CD 
pairs in the gains condition.

We next examined the proportion of C choices on the critical CA test 
trials, which are shown in Fig. 3b. Visual inspection of the graph sug
gests that there was a frequency effect in the gains condition, where 
participants selected option C less often than chance. A one-sample 
Bayesian t-test with 0.5 set as the test value indicated a significant dif
ference, BF10 = 20.27, d = 0.31. However, in the losses condition par
ticipants selected from options A and C roughly equally, on average. A 
one-sample Bayesian t-test indicated support for the null hypothesis 
that the proportion of C choices did not differ from 0.5, BF10 = 0.11, d =
0.05. We ran a similar Bayesian multilevel model as in the training data 
above, with C choices (coded as 1, 0 for A choices) regressed on the 
effect of condition, with random intercepts for participants. This model 
suggested no difference based on condition, b = 0.48, SE = 0.28, 95% 
HCI = [− 0.06, 1.03], OR = 1.61. A Bayesian independent samples t-test 
on the average proportion of C choices between conditions did not 
indicate at least moderate support for either the null or alternate hy
pothesis, BF10 = 0.891, d = 0.25. Thus, although the proportion of C 
choices were significantly below chance in the gains condition, the 
difference between the gains and losses condition was not significant, 
and participants selected option A slightly more than C in the losses 
condition.

Fig. 4 shows the distribution of C choices on the critical CA test trials. 
Values to the left of each plot indicate a preference for A, the more 

frequently rewarded option, and values on the right indicate a prefer
ence for C. Interestingly the modal value in each condition is close to 0% 
C choices, indicating that many participants showed a strong effect of 
frequency in both conditions. However, in the losses condition there are 
considerably more participants who selected C almost exclusively, than 
there are in the gains condition, as indicated by the cluster of partici
pants to the extreme right, within the losses plot. There are also more 
losses participants who chose A and C roughly equally often.

2.2.1. Model fits
For each model, we fit each participant's data individually by esti

mating maximum likelihood for the eight models presented above. All 
choices except for the very first trial were fit. To compare the models, we 
computed the BIC value for each model (Schwarz, 1978), which pe
nalizes models based on their number of free parameters. Table 1 shows 
the average best-fitting parameter values, along with the average BIC 
values. Lower BIC values indicate a better fit, and BIC values can be 
transformed into Bayes Factors, favoring one model over the other by 
exponentiating the difference between the poorer fitting model and the 
best-fitting model and dividing by two (Wagenmakers, 2007). This 
means that a BIC difference of 3 indicates moderate support for the 
better fitting model (BF10 = 4.48); a BIC difference of 5 indicates strong 
support (BF10 = 12.18). Thus, BIC differences less than 3 indicate that 
neither model is substantially more supported by the data than the 
other, and these values are presented in bold in Table 1 to indicate that 
the model did not fit significantly worse than the best-fitting model. We 
also conducted group-level random-effects Variational Bayesian model 
selection (VBMS; Stephan, Penny, Daunizeau, Moran, & Friston, 2009), 
which treats models as random variables that may vary across in
dividuals. In this framework, model frequencies are estimated by fitting 
a Dirichlet distribution, which is then used to define a multinomial 
distribution representing the probability that any given model generated 
the data for a randomly selected subject. Specifically, the posterior 
Dirichlet parameters, α, represent the estimated population frequency 
with which each model generated individual data. The posterior 
multinomial parameter, rk, describes the probability that data from a 
randomly chosen subject is generated by a specific model k. Finally, the 
exceedance probability, φk, quantifies the likelihood that a particular 
model k is more likely than any other model in the comparison set to 
generate group-level data.In both conditions, the Decay-Win, PVPE- 
Decay, and Delta-Uncertainty models provided a substantially better fit 
to the data, on average, than any of the other models, with the exception 
of the Decay model in the gains condition. The PVPE-Decay and Delta- 
Uncertainty models fit substantially better than the other extended 
models, the PVL-Delta and PVL-Decay models. In both conditions, the 
Decay-Win model provided the best fit of the Basic, two-parameter 
models; however, the Delta and Decay models fit almost as well in the 
Gains condition. In the Losses condition, the PVPE-Decay model fit 
substantially better than both the Delta (BF10 = 25.79) and Decay 
models (BF10 > 10 K). Thus, two of the relative-reward processing 
models, Decay-Win and PVPE-Decay, were the best-fitting basic and 
extended models. Other than the Delta-Uncertainty model, the absolute- 
reward processing models received less support, particularly in the 
Losses condition.

The third column in Table 1 lists the average BIC weights for each 
model (Wagenmakers & Farrell, 2004). These values are similar to the 
proportion of data sets best fit by each model, however, some weight is 
given to models that fit nearly as well as the best-fitting model. Inter
estingly, the Decay-Win model has the highest BIC-weight in each con
dition, while the PVPE-Decay model receives less weight. This pattern is 
also replicated in VBMS results, which suggests that a substantial pro
portion of participants' data are best fit by the Decay-Win model alone, 
and the inclusion of the shape and weight to relative losses parameters 
does not provide a substantially better fit. Following the Decay-Win 
model, the Delta model had the next highest BIC-weights and VBMS 
indices in both conditions, and the Decay model received more weight in 

3 Bayes Factors for the alternate and null hypotheses are inverse of each other 
(BF10 = 1/ BF01).
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the gains than in the losses condition.
Table 2 lists the average parameter values for each model. Because 

the PVPE-Decay model provided the best fit, and includes the Decay-Win 
and Decay-Loss models as special cases, we focus on its best-fitting 
parameter estimates. Of interest, the weight to relative losses param
eter (wL) is below 0.5 in each condition, indicating a stronger reliance on 
relative gains than relative losses. Fig. 5 shows the distribution of best- 
fitting parameter values for each of the four parameters from the PVPE- 
Decay model. The distribution of best-fitting inverse-temperature, or 
sensitivity parameters (c) is fairly normally distributed (Fig. 5b). How
ever, there is strong bimodality in the distributions of the other three 
parameters, where there are large subclusters of participants whose data 
are best fit by extreme values at the parameter bounds. For the decay 
parameter (Fig. 5a) this distribution suggests that many participants had 
little or no decay of past outcomes, while another group of participants 
showed almost complete decay of past outcomes, where their decisions 
were based mainly on the outcome from the last trial. For the shape 
parameter (Fig. 4c) a value of 1 indicates full processing of the 

magnitude of relative rewards, while values of 0 indicate that all reward 
magnitude are processed as either +1 or − 1, depending on whether the 
relative reward is positive or negative, as in the Decay-Win and Decay- 
Loss models. Finally, the distribution of weight-to-loss parameters sug
gests that a substantial proportion of participants attended solely to 
relative gains or solely to relative losses, similar to the strategy assumed 
by the Decay-Win and Decay-Loss models. Overall, the pattern suggests 
that the PVPE-Decay model is flexible enough to account for a variety of 
strategies, and that a substantial portion of participants were using 
specific strategies assumed by the basic Decay-Win or Decay-Loss 
models.

2.2.2. Post-hoc simulations
We next conducted post-hoc simulations using the best-fitting pa

rameters for each model (Ahn et al., 2008; Busemeyer & Stout, 2002). 
For each participant's best fitting parameters, we conducted 200 simu
lations and averaged the model's predicted choices across those simu
lations. Fig. 6 shows the average proportion of C choices on CA test 

Fig. 3. a.) Proportion of optimal choices during training for each trial type. B.) Proportion of C choices on CA transfer trials. Error bars represent standard errors of 
the mean.

Fig. 4. Distributions of the average proportion of C choices on the critical CA test trials for participants in each condition in Experiment 1.
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trials, along with the same data for participants. Qualitatively, the 
Decay, Decay-Win, PVL-Decay, and PVPE-Decay models are the only 
ones that can reproduce the frequency effect within the gains condition, 
where participants select option C less than option A. For the losses 
condition, the PVPE-Decay model appears to come closest to repro
ducing the observed proportion of C choices, with the Decay-Win model 
underpredicting C choices, and the other models overpredicting C 
choices. Despite fitting the data well, the Delta-Uncertainty model did 
not reproduce the frequency effect.

To quantify each model's performance, we computed the root mean 
squared deviation between each model's predicted choice proportions to 
those observed from human participants, across all trials. For each trial 
type we computed each model's predicted proportion of optimal choices 
in the order that they were presented. For example, across all model 

simulations we computed the average C choices made on the first CA 
trial, then choices for the second CA trial and so on, for all trial types. 
These RMSD values are shown in Table 3. For CA trials, the PVPE-Decay 
model had the lowest RMSD values in the gains condition, and it had 
slightly higher RMSD than the PVL-Decay model in the losses condition. 
In the gains condition, where a significant frequency effect was 
observed, the Delta and PVL-Delta models had the poorest RMSD.

Table 3 also lists the average RMSD values across all six trial types. 
The Decay-Win and PVL-Decay models had the lowest overall RMSD in 
the gains condition, followed closely by the PVPE-Decay, and basic 
Decay models. Interestingly, in the losses condition, the Delta- 
Uncertainty model had the lowest overall RMSD, followed by the 
basic Delta and PVL-Delta models. Thus overall, the PVPE-Decay model 
provided the best post-hoc recovery of the frequency effect observed in 
the gains condition, and it provided good recovery across all trials. The 
Decay-Loss model provided the worst post-hoc recovery across all trials, 
and most of the other models provided a good account for trials other 
than the critical CA trials in the gains condition. The RMSD values for 
each individual trial type are shown in the Supplemental Materials 
(Table S1), along with plots of the observed and simulated data.

2.3. Discussion

The results of Experiment 1 clearly do not support the prediction of a 
reverse frequency effect, made by the Decay and PVL-Decay models in 
the losses condition. However, while we did not observe a reverse fre
quency effect under losses, we also did not observe a strong frequency 
effect. One possibility for the ambiguous results in the losses condition is 
that we observed significantly poorer learning compared to the gains 
condition. In an effort to improve learning, and enhance participants' 
understanding of the purpose of the task, we designed a second exper
iment, which included only the losses conditions, where we created a 
more engaging cover story where participants were told to imagine that 
they were workers in a dog shelter, and on each trial they picked from 
one of two stores from which they could purchase dog food for the 
shelter. Their goal, on each trial, was to try to pick the store that would 
provide the cheapest food, so as to minimize the total money spent on 
dog food.

We predicted that this would be a more engaging cover story, or 
scenario for the task, and that participants would be more likely to 
understand that large numerical values were worse than small numeri
cal values, than in Experiment 1. We also modified the reward structure 
in Experiment 2, so that all outcomes were losses, whereas in Experi
ment 1 there were some rare gains in the losses condition, and rare losses 
in the gains condition. We believed this modification might further 
strengthen participants' understanding of the task.

3. Experiment 2

Experiment 2 included two conditions, both with a losses reward 
structure: a control condition where there were equal AB and CD trials 
during training, and a frequency condition similar to Experiment 1. In 
the control condition, we predicted that people would show a preference 
for option C on CA test trials, as found in prior work (Don & Worthy, 
2022).

3.1. Method

3.1.1. Participants
Based on the power analysis reported for Experiment 1 above, we 

planned to run approximately 120 participants in each condition. Our 
final sample size was 244 participants, 122 in each condition. Within the 
control condition there were 79 females, 42 males, and one other; within 
the frequency condition there were 73 females, 48 males, and one other.

Table 1 
Average best-fitting BIC values and BIC-weights in Experiment 1.

Mean 
BIC

BFBestModel, 

M

BIC- 
weight

VB α VB 
rk

VB φk

Gains
Delta 285.75 136.32 0.18 25.51 0.20 0.39
Decay 278.12 3.00 0.17 20.79 0.16 0.10
Decay-Win 275.92 – 0.18 26.56 0.21 0.50
Decay-Loss 352.09 >10 K 0.08 8.52 0.07 <

0.001
PVL-Delta 290.47 1442.75 0.10 11.32 0.09 <

0.001
PVL-Decay 285.37 112.73 0.12 15.25 0.12 0.01
PVPE-Decay 277.69 2.42 0.06 7.73 0.06 <

0.001
Delta- 

Uncertainty
278.82 4.26 0.10 12.32 0.10 <

0.001
Losses
Delta 310.41 25.79 0.28 46.61 0.33 0.41
Decay 348.40 >10 K 0.08 6.98 0.05 <

0.001
Decay-Win 304.61 1.41 0.31 48.84 0.35 0.59
Decay-Loss 348.79 >10 K 0.11 12.48 0.09 <

0.001
PVL-Delta 315.99 419.89 0.02 1.09 0.01 <

0.001
PVL-Decay 358.70 >10 K 0.03 1.24 0.01 <

0.001
PVPE-Decay 303.91 – 0.10 12.44 0.09 <

0.001
Delta- 

Uncertainty
308.50 4.26 0.10 10.32 0.07 <

0.001

Note: Bayes Factors in bold indicate a model fit close to the best-fitting model.

Table 2 
Average best-fitting parameter and BIC values in Experiment 1.

Parameter a or A c γ or Unc0 λ or wL or wUnc

Gains
Delta 0.33 (0.35) 1.49 (1.06)
Decay 0.23 (0.31) 0.45 (0.39)
Decay-Win 0.17 (0.23) 0.42 (0.35)
Decay-Loss 0.74 (0.35) 0.14 (0.22)
PVL-Delta 0.33 (0.36) 1.36 (0.89) 0.50 (0.43) 2.73 (1.41)
PVL-Decay 0.25 (0.31) 0.43 (0.34) 0.57 (0.44) 2.47 (1.36)
PVPE-Decay 0.16 (0.24) 0.61 (0.41) 0.26 (0.34) 0.29 (0.33)
Delta-Uncertainty 0.31 (0.32) 1.05 (0.78) 1.53 (1.84) 106.31 (273.26)
Losses
Delta 0.31 (0.36) 1.43 (1.33)
Decay 0.68 (0.38) 0.22 (0.29)
Decay-Win 0.22 (0.32) 0.29 (0.27)
Decay-Loss 0.69 (0.37) 0.22 (0.30)
PVL-Delta 0.31 (0.37) 1.26 (0.81) 0.46 (0.44) 2.63 (1.35)
PVL-Decay 0.70 (0.37) 0.22 (0.27) 0.74 (0.41) 2.33 (1.31)
PVPE-Decay 0.24 (0.33) 0.54 (0.35) 0.27 (0.37) 0.42 (0.37)
Delta-Uncertainty 0.24 (0.32) 0.92 (0.85) 1.35 (1.69) 180.52 (354.64)

Note: Values in parentheses are standard deviations.
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3.1.2. Materials and procedure
Participants performed the experiment on the same computers and 

used the same software as in Experiment 1. Fig. 7 shows example screen 
shots from the training phase of the experiment. Participants were told 
that they would be playing the role of a person who works at a dog 

shelter who is tasked with buying food for the dogs each day. On each 
trial they picked one of two options that represented the stores they 
could buy from. Each time they made a choice they were shown how 
much the dog food cost that day. Their job was to figure out which 
option in each pair had the lowest price. The total amount spent was 

Fig. 5. Distributions of the average proportion of C choices on the critical CA test trials for participants in each condition.

Fig. 6. Average proportion of C choices on critical CA test trials from post-hoc simulations for Experiment 1.
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shown at the top, and participants were told to try their best to minimize 
that amount.

The trial structure of the task was identical to that from Experiment 
1. In the control condition, participants performed 75 AB trials and 75 
CD trials during training, while participants in the frequency condition 
performed 100 AB trials and 50 CD trials. Trial types were randomly 
interspersed and randomized separately for each individual. During the 
test phase all participants performed 25 trials of each of the novel trial 
types: CA, CB, AD, and BD, in a randomly interspersed order.

The reward structure was a linear transformation of the losses 
reward structure used in Experiment 1. Average reward values for op
tions A-D were multiplied by 10, and then 10 points was subtracted from 
each value. These yielded average losses for options A-D of (− $13.50, 
− $16.50, − $12.50, and -$17.50). The standard deviation in rewards 

from Experiment 1 was 0.43, and this value was multiplied by 10 for the 
current experiment, yielding a standard deviation around the mean 
reward values of 4.3. Options A and C had the lowest average cost for 
dog food within each training pair, and option C had the lowest cost 
overall (− $12.50 versus -$13.50 for A).

3.1.3. Data analysis
We used the same data analysis methods as reported in Experiment 1.

3.2. Results

Fig. 8a shows the proportion of optimal choices during the training 
phase. A Bayesian mixed effects logistic regression model predicting 
optimal choices during training from condition, with random intercepts 
for participants, indicated no effect of condition, b = − 0.07, SE = 0.14, 
95% HCI = [− 0.34, 0.22], OR = 0.93. We also ran a similar model 
predicting optimal choices from the interaction between condition and 
trial type, with random intercepts for participants. There was no inter
action effect, b = − 0.00, SE = 0.05, 95% HCI = [− 0.09, 0.10], OR =
0.99. Thus, there was no difference between conditions, and participants 
in each condition showed similar levels of learning for each trial type.

We next examined the proportion of C choices on the critical CA 
transfer trials, which are shown in Fig. 8b. A Bayesian mixed effects 
logistic regression model with optimal choices predicted from condition, 
with random intercepts for participants, indicated a significant effect of 
condition, b = 1.04, SE = 0.35, 95% HCI = [0.37, 1.77], OR = 2.86. The 
odds ratio indicates that on any CA test trial, the odds of selecting option 
C were 2.86 times higher for participants in the control condition. A 
Bayesian t-test with average C choices as the dependent variable in
dicates a moderate effect of condition, BF10 = 6.33, d = 0.37. Partici
pants in the control condition selected option C on 57% of trials, while 
participants in the frequency condition selected A on only 44% of trials.

We next examined whether the proportion of C choices within the 
frequency condition was significantly different than 0.5. A one-sample 
Bayesian t-test indicated no significant difference from 0.5, BF10 =

0.54, d = 0.169, although there was also no conclusive support for the 
null hypothesis. The 95% credible interval included 0.5 within its upper 
bound, 95% HCI = [0.383, 0.503]. Thus, although the difference be
tween conditions was significant, there was not a significant frequency 
effect observed in the frequency condition when the proportion of C 
choices (0.44) is compared to chance (0.50).

We also compared the proportion of C choices on CA trials between 
the frequency condition in Experiment 2 and the gains condition from 
Experiment 1, where a significant frequency effect was observed, with 
the proportion of C choices equaling 0.40. An independent sample 
Bayesian t-test indicated support for the null hypothesis, BF10 = 0.22, d 
= 0.126, which suggests that there is no difference in C choices between 
the two conditions across experiments. Overall, these results suggest a 
moderate frequency effect in Experiment 2 that was slightly attenuated 
compared to the gains condition in Experiment 1.

Fig. 9 shows the distribution of C choices on CA test trials for each 
group. On the left panel, for Control group participants, the modal value 
is on the extreme right edge of the distribution, indicating a large group 
of participants who selected option C on nearly every trial. On the left 
panel, participants in the frequency condition showed a slight bias 
overall for option A over C, with the modal group clustered toward the 
left side of the plot, indicating almost zero C choices for this group of 
participants. However, there is also a cluster of participants at the far 
right of the plot for the frequency condition who selected option C on 
nearly every trial. Overall, the pattern of C choices on CA trials reveals a 
modest frequency effect.

3.2.1. Model fits
Table 4 shows the average BIC values, Bayes Factors, BIC-weights, 

and VBMS statistics for each model. The Delta-Uncertainty, Decay-Win 
and PVPE-Decay models provided the best fit in the Frequency 

Table 3 
RMSD values from Post-hoc simulations.

Gains Losses

CA Trials
Delta 0.144 0.057
Decay 0.088 0.061
Decay-Win 0.080 0.124
Decay-Loss 0.124 0.061
PVL-Delta 0.133 0.065
PVL-Decay 0.081 0.028
PVPE-Decay 0.037 0.032
Delta Uncertainty 0.116 044
All Trials
Delta 0.073 0.051
Decay 0.058 0.101
Decay-Win 0.056 0.079
Decay-Loss 0.171 0.104
PVL-Delta 0.072 0.051
PVL-Decay 0.056 0.056
PVPE-Decay 0.058 0.069
Delta Uncertainty 0.082 0.048

Fig. 7. Example screenshots for Experiment 2.
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condition, all within less than 1 BIC unit in average fit. The BIC weights 
suggests that about 38% of participants' data sets are best fit by the 
Decay-Win model, with the Delta model fitting 25% of participants' data, 
and the Delta-Uncertainty fitting 11%. The other models all had BIC 
weights less than 0.10, indicating that less than 10% of data sets were 
best fit by these models. This pattern is replicated in the VBMS results 
and suggests that most participants used a strategy represented by the 
Decay-Win or the Delta model. In the control condition, the Decay-Win 
provided the best fit to the data, followed by the PVPE-Decay and the 
Delta-Uncertainty models. The Decay-Win and Delta model again had 
the highest BIC-weights, followed by the Delta-Uncertainty model. 
Intriguingly, despite providing a poor fit on average, the Decay-Loss 
model had a BIC weight of 0.11, which suggests that around 11% of 
participants were using a relative loss minimization strategy in the 
control condition.

Table 5 shows the best-fitting parameter values for each model. For 
the best-fitting Decay-Win model, the average decay parameter value is 

relatively low (~0.20), which suggests that participants weighed out
comes from many recent trials when developing expectations about the 
outcomes provided by each option. As in Experiment 1, for the PVPE- 
Decay model the weight-to-relative losses parameter was less than 0.5, 
indicating an average bias toward relative gain outcomes. The average 
shape parameter values were also low, with many participants dis
counting relative reward magnitudes, and focusing only on whether 
rewards were relative wins or losses. One additional point to note is that 
the Decay and PVL-Decay models had very low best-fitting parameter 
values for the inverse temperature parameter in both conditions. This 
suggests that the model was often best fit by assuming near random 
responding in the task. As discussed above, as well as further below, the 
Decay model makes unrealistic predictions when only losses are 
provided.

3.2.2. Post-hoc simulations
We next conducted post-hoc simulations, identical to the procedures 

Fig. 8. a.) Proportion of optimal choices during training for each trial type in Experiment 2. b.) Proportion of C choices on CA transfer trials. Error bars represent 
standard errors of the mean.

Fig. 9. Distributions of the average proportion of C choices made on CA test trials, within each condition in Experiment 2. Left panel: Control condition, Right panel: 
Frequency condition. Values to the left within each panel indicate more A choices, and values to the right indicate more C choices.
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outlined in Experiment 1 above. Fig. 10 shows the predicted and 
observed choices made on the critical CA test trials. Participants' data 
are plotted in the top left of the plot, then the average simulated pro
portion of C choices on each CA test trial is shown for each model. The 
Decay-Win and PVPE-Decay models most clearly predict the pattern of 
the data where participants in the control condition selected option C 
much more than participants in the frequency condition, who preferred 
option A. However, the Decay-Win model predicts a larger frequency 
effect than was observed. The Delta and Delta-Uncertainty models pre
dict smaller frequency effects than were observed, and the PVL-Delta 
model reproduced a reversed frequency effect that was opposite to the 
pattern of the data. The Decay, Decay-Loss, and the PVL-Decay models 
all predict chance behavior because the models learn poorly under all- 

losses conditions.
The top section of Table 6 shows the RMSD between the simulated 

and observed C choice on CA trials for each model. In the frequency 
condition the PVPE-Decay model had the lowest RMSD. Interestingly, 
the Decay-Win model had the second-highest RMSD because it predicted 
much fewer C choices than observed. The PVPE-Decay model was likely 
better able to reproduce the overall pattern of the data than the Decay- 
Win model because it is more flexible, and can account for participants 
who did not exclusively attend to relative gains, as assumed by the 
Decay-Win model. In the control condition, the Delta-Uncertainty model 
had the lowest RMSD, followed by the PVL-Delta, Delta, and PVPE- 
Decay models.

We next examined post-hoc simulations across all trials. These are 
plotted in Figs. S6 and S7, and Table 4 lists the RMSD values at the 
bottom. In both conditions the Delta-Uncertainty model had the lowest 
overall RMSD, followed by the Delta, Decay-Win and PVPE-Decay 
models. The PVL-Delta model had a comparatively low RMSD in the 
control, but not the frequency condition, and the Decay, PVL-Decay and 
Decay-Loss models had the highest RMSD across all trials. Table S2 in
dicates that the Delta-Uncertainty model had a much lower RMSD than 
the other models for both training trial types, but it did not have the 
lowest RMSD for any of the remaining test trials, with the Decay-Win 
and PVPE-Decay models usually providing the best post-hoc recovery 
of the test-trial data.

3.3. Discussion

Experiment 2 differed from Experiment 1 in that a cover story was 
introduced which provided a context for the loss-minimization scenario 
(buying dog food), and the reward structure was shifted to where all 
outcomes were losses. The average losses for each option were between 
− 12.50 and − 17.50, compared to − 0.25 and − 0.75 for Experiment 1. 
These changes resulted in a significant frequency effect in Experiment 2. 
Model-based analyses suggest that the PVPE-Decay model can best ac
count for the frequency effect by assuming that participants interpreted 
smaller losses as relative wins, or positive outcomes, and that more 
frequent options were associated with more of these relative wins.

We believe that the context manipulation added in Experiment 2, 
where participants viewed each trial as trying to minimize a shopping 
expenditure was the key aspect of the manipulation that led to the fre
quency effect in Experiment 2, because it made it more likely that par
ticipants viewed smaller losses as relative gains. However, we also 
changed the reward structure in Experiment 2 to where all outcomes 
were losses. To examine whether the change in reward structure alone 
can produce a frequency effect, we ran a modified version of Experiment 
2, where the reward structure was the same, but the cover story about 
shopping for dog food for a local shelter was removed. Instead, partic
ipants were given the same instructions as Experiment 1 where they 
were simply asked to try to minimize the number of points lost. We 
predicted that the lack of a contextual cover story would lead to atten
uated frequency effects because participants would be less able to 
interpret smaller losses as relative gains.

4. Experiment 3

4.1. Method

4.1.1. Participants
Given time constraints for completing Experiment 3, we planned to 

run approximately 100 participants in each condition. The computer 
program randomly assigned each participant to a condition. Our final 
sample size was 203 participants, 97 participants in the control condi
tion and 106 participants in the frequency condition. Within the control 
condition there were 70 females, 26 males, and one other; within the 
frequency condition there were 78 females, 27 males, and one other. 
Participants completed the experiment online for partial fulfilment of a 

Table 4 
Average best-fitting BIC values and BIC-weights in Experiment 2.

Mean 
BIC

BFBestModel, 

M

BIC- 
weight

VB α VB 
rk

VB φk

Frequency
Delta 294.18 79.84 0.25 37.24 0.29 0.04
Decay 353.78 > 10 K 0.06 8.37 0.06 <

0.001
Decay-Win 285.21 1.08 0.38 53.81 0.41 0.96
Decay-Loss 352.35 >10 K 0.03 2.50 0.02 <

0.001
PVL-Delta 298.53 716.95 0.03 1.01 0.01 <

0.001
PVL-Decay 358.91 >10 K 0.01 1.02 0.01 <

0.001
PVPE-Decay 285.90 1.31 0.07 6.92 0.05 <

0.001
Delta- 

Uncertainty
285.04 – 0.16 19.14 0.15 <

0.001
Control
Delta 297.45 229.29 0.23 33.99 0.26 0.03
Decay 351.31 >10 K 0.04 7.09 0.06 <

0.001
Decay-Win 286.45 – 0.33 51.14 0.39 0.97
Decay-Loss 347.97 >10 K 0.11 12.78 0.10 <

0.001
PVL-Delta 301.20 1540.71 0.04 1.09 0.01 <

0.001
PVL-Decay 351.68 >10 K 0.05 2.58 0.02 <

0.001
PVPE-Decay 289.73 7.17 0.08 7.97 0.06 <

0.001
Delta- 

Uncertainty
293.64 36.41 0.13 13.36 0.10 <

0.001

Note: Values in parentheses are standard deviations.

Table 5 
Average best-fitting parameter and BIC values in Experiment 2.

Parameter a or A c γ or Unc0 λ or wL or wUnc

Frequency
Delta 0.31 (0.38) 0.90 (1.44)
Decay 0.87 (0.25) 0.01 (0.01)
Decay-Win 0.19 (0.29) 0.37 (0.41)
Decay-Loss 0.77 (0.33) 0.15 (0.24)
PVL-Delta 0.33 (0.37) 2.09 (2.17) 0.47 (0.47)
PVL-Decay 0.89 (0.24) 0.07 (0.17) 0.28 (0.45)
PVPE-Decay 0.17 (0.27) 0.37 (0.37) 0.28 (0.41) 0.25 (0.31)
Delta-Uncertainty 0.22 (0.32) 0.28 (0.34) 2.15 (1.94) 143.81 (274.38)
Control
Delta 0.23 (0.31) 0.88 (1.35)
Decay 0.79 (0.31) 0.01 (0.02)
Decay-Win 0.20 (0.31) 0.41 (0.53)
Decay-Loss 0.65 (0.39) 0.21 (0.28)
PVL-Delta 0.25 (0.32) 1.69 (2.10) 0.50 (0.47)
PVL-Decay 0.80 (0.30) 0.07 (0.17) 0.28 (0.45)
PVPE-Decay 0.21 (0.28) 0.46 (0.54) 0.30 (0.40) 0.36 (0.40)
Delta-Uncertainty 0.24 (0.32) 0.92 (0.85) 1.35 (1.69) 180.52 (354.64)

Note: Values in parentheses are standard deviations.
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course credit.

4.1.2. Materials and procedure
The materials and procedures were identical to Experiment 2, except 

that the cover story about buying dog food for a local shelter was 
removed, and participants were simply asked to pick which option they 
thought would lead to the smallest losses. This task framing was iden
tical to the losses condition in Experiment 1.

4.1.3. Data analysis
We used the same data analysis methods as reported in Experiment 1.

4.2. Results

Fig. 11a shows the proportion of optimal choices during the training 
phase. A Bayesian mixed effects logistic regression model predicting 

optimal choices during training from condition, with random intercepts 
for participants, indicated no effect of condition, b = − 0.26, SE = 0.25, 
95% HCI = [− 0.77, 0.23], OR = 0.0.77. We also ran a similar model 
predicting optimal choices from the interaction between condition and 
trial type, with random intercepts for participants. There was no inter
action effect, b = − 0.02, SE = 0.07, 95% HCI = [− 0.18, 0.12], OR =
0.98. Training accuracy was also much greater than chance overall at 
78% for AB trials and 80% for CD trials.

We next examined the proportion of C choices on the critical CA 
transfer trials, which are shown in Fig. 11b. A Bayesian mixed effects 
logistic regression model with optimal choices predicted from condition 
indicated no effect of condition, b = − 0.54 SE = 0.56, 95% HCI =
[− 1.63, 0.56], OR = 0.58. A Bayesian t-test with average C choices as the 
dependent variable indicated a null effect of condition, BF10 = 0.25, d =
0.15. The Bayes Factor in support of the null hypothesis (BF01) was 3.97, 
indicating moderate support. Thus, there was no effect of reward 
frequency.

We also conducted a one-sample t-test within the frequency condi
tion with 0.5 as the test statistic. This suggested moderate support for the 
null hypothesis that the proportion of C choices did not differ from 0.5, 
BF10 = 0.20, d = 0.11. Fig. 12 shows the distribution of C choices on CA 
test trials for each group. Slightly more participants preferred option A 
in the frequency than the control condition, but the difference is very 
small.

We also compared the data to Experiment 2, which differed only in 
the framing of the task. A 2 (experiment) X 2 (frequency condition) 
Bayesian ANOVA with the proportion of C choices on CA test trials as the 
dependent variable indicated a null effect of the experiment X frequency 
condition interaction, BFM = 0.26, η2

p = 0.002, which suggests that the 
pattern of the difference between the control and frequency conditions is 
consistent across Experiments 2 and 3. The best supported model 
included only the effect of frequency condition, BFM = 0.2.94, η2

p =

0.015. A t-test comparing the Frequency condition data across Experi
ments 2 and 3 indicates only anecdotal support for the hypothesis that 
the two groups differed in their proportion of C choices, BF10 = 1.11, d 
= 0.28, despite an 11% difference (44% C choices in Experiment 2 

Fig. 10. Post-hoc simulated C choices on each CA test trial in Experiment 2, along with participants' data in the top left.

Table 6 
RMSD Values From Post-hoc Simulations, Exp. 2.

Frequency Control

CA Trials
Delta 0.094 0.047
Decay 0.071 0.069
Decay-Win 0.114 0.048
Decay-Loss 0.077 0.063
PVL-Delta 0.263 0.042
PVL-Decay 0.072 0.070
PVPE-Decay 0.048 0.061
Delta-Uncertainty 0.056 0.041
All Trials
Delta 0.055 0.061
Decay 0.137 0.124
Decay-Win 0.065 0.072
Decay-Loss 0.132 0.111
PVL-Delta 0.159 0.070
PVL-Decay 0.137 0.125
PVPE-Decay 0.069 0.077
Delta-Uncertainty 0.046 0.048
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versus 55% in Experiment 3). However, a similar comparison between 
the frequency condition from Experiment 3 and the gains condition from 
Experiment 1, indicated significantly fewer C choices in Experiment 1 
(M = 0.40) than in Experiment 3 (M = 0.55), BF10 = 9.04, d = 0.40. As 
reported above, there was no difference in C choices between the fre
quency condition from Experiment 2 and the gains condition from 
Experiment 1. While the lack of an interaction between Experiments 2 
and 3 suggests that the pattern of the effect of frequency did not differ 
between the two experiments, there was no support for a frequency ef
fect in Experiment 3 when tested against chance (0.5), and when 
compared against the frequency effect found in the gains condition of 
Experiment 1.

4.2.1. Model fits
Table 7 shows the average BIC values, Bayes Factors, BIC-weights, 

and VBMS results for each model. The Delta-Uncertainty, and Decay- 
Win models provided the best fit in the Frequency condition, within 

less than 1 BIC unit in average fit. The BIC weights suggests that about 
28% of participants' data sets are best fit by the Delta-Uncertainty 
model, with the Delta model fitting 24% of participants' data, the 
Decay-Win model fitting 23% of participants' data, and the PVPE-Decay 
16%. The other models all had BIC weights less than 0.10, indicating 
that less than 10% of data sets were best fit by these models. In the 
control condition, the Delta-Uncertainty model provided the best fit to 
the data, followed by the Delta and Decay-Win model. The Delta, Delta- 
Uncertainty, and Decay-Win models also received the most support ac
cording to the VBMS statistics, such as the exceedance probability.

Table 8 shows the best-fitting parameter values for each model. For 
the best-fitting Decay-Win model, the average decay parameter value is 
relatively low (~0.15), which suggests that participants weighed out
comes from many recent trials when developing expectations about the 
outcomes provided by each option. As in the first two experiments, for 
the PVPE-Decay model the weight-to-relative losses parameter was less 
than 0.5, indicating an average bias toward relative gain outcomes. The 

Fig. 11. a.) Proportion of optimal choices during training for each trial type in Experiment 3. b.) Proportion of C choices on CA transfer trials. Error bars represent 
standard errors of the mean.

Fig. 12. Distributions of the average proportion of C choices made on CA test trials, within each condition of Experiment 3. Left panel: Control condition, Right 
panel: Frequency condition. Values to the left within each panel indicate more A choices, and values to the right indicate more C choices.
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average shape parameter values were also low (~0.20), with many 
participants discounting relative reward magnitudes, and focusing only 
on whether rewards were relative wins or losses. As in the first experi
ments, the Decay and PVL-Decay models had very low best-fitting 
parameter values for the inverse temperature parameter suggesting 
that these models can, at best, predict random performance.

4.2.2. Post-hoc simulations
Fig. 13 shows the predicted and observed choices made on the crit

ical CA test trials. The PVPE-Decay, Delta and Delta-Uncertainty models 
most clearly predict the pattern of the data where participants in the 

control condition selected option C slightly more than participants in the 
frequency condition. However, the Decay-Win model predicts a larger 
frequency effect than was observed. The PVPE-Decay model predicted a 
slightly larger frequency effect than was observed. As in Experiment 2, 
the PVL-Delta model again reproduced a reversed frequency effect that 
was opposite to the pattern of the data. The Decay, Decay-Loss, and the 
PVL-Decay models all predict chance behavior because the models learn 
poorly under all-losses conditions.

The top section of Table 9 shows the RMSD between the simulated 
and observed C choice on CA trials for each model. In the frequency 
condition the Delta-Uncertainty model had the lowest RMSD. As in 
Experiment 2, the Decay-Win model had the second-highest RMSD 
because it predicted much fewer C choices than observed. In the control 
condition, the PVL-Delta model had the lowest RMSD, but all models 
except the Decay and PVL-Decay models had similarly low RMSD values. 
Overall, the pattern of the Delta-Uncertainty model appears to best ac
count for the data in the frequency condition.

We next examined post-hoc simulations across all trials. The RMSD 
values are shown at the bottom of Table 9, and the simulation results are 
plotted in the Supplemental Materials. The basic Delta had the lowest 
RMSD in both conditions for both training trial types (AB and CD). The 
Decay-Win, PVPE-Decay, and the basic Delta model had the lowest 
RMSD values for the remaining test trial types (CB, AD, and BD).

5. General discussion

The results of our experiments do not support the prediction of the 
Decay model, of a reversed frequency effect under losses, and a standard 
frequency effect under gains. We did not find a reversed frequency effect 
in Experiments 1 or 3, and in Experiment 2 we found a moderate fre
quency effect under losses, in the same direction as the gains condition 
from Experiment 1. Although the Decay model correctly predicted a 
frequency effect in the gains condition from Experiment 1, it provided 
very poor fits and simulations for the losses conditions across all three 
experiments. In a recent paper from our lab (Don et al., 2019), we found 
that the Decay model provided the best account of the observed fre
quency effect in a binary outcome task involving gains, but it appears 
that the Decay model's predictions are qualitatively incorrect under loss- 
minimization scenarios. Under losses, the Decay model predicts that as 
an option is chosen more often, it will become worse in value because 
the chosen option will become more negative, while the non-chosen 
options will decay toward zero. This prediction runs counter to many 
experiments that indicate that people have a strong tendency to 
perseverate, or repeatedly pick the same option (Gershman, 2020; 
Senftleben, Schoemann, Rudolf, & Scherbaum, 2021; Worthy, Pang, & 
Byrne, 2013).

Our theoretical interpretation of the Decay model is that it assumes 
that when participants make a decision on each trial, they think of all the 
past outcomes associated with each option, in a recency-weighted 
manner. Under gains, the model assumes participants recall the past 
gains for each option, biasing choices toward more frequently presented 
options, but under losses the model assumes that the losses for each 
option will be recalled, and there will be more losses associated with the 
more frequently presented alternative. These additionally recalled losses 
will bias choices away from the more frequently encountered items, 
creating the reversed frequency effect. In contrast, the Decay-Win and 
PVPE-Decay models, which provided the best fits and post-hoc recovery 
of the data, particularly for the critical CA test trials. These models as
sume that reward outcomes are processed in a relative rather than an 
absolute manner (Rakow et al., 2020). In tasks involving roughly equal 
numbers of gains and losses, such as the Iowa Gambling task (Bechara, 
Damasio, Damasio, & Anderson, 1994), absolute and relative losses and 
gains would tend to be the same.

Our data suggest that losses are not necessarily processed as aversive, 
particularly when additional context is provided which helps partici
pants view smaller losses as positive outcomes, as in Experiment 2. The 

Table 7 
Average best-fitting BIC values and BIC-weights in Experiment 3.

Mean 
BIC

BFBestModel, 

M

BIC- 
weight

VB α VB 
rk

VB φk

Frequency
Delta 209.03 221.41 0.24 29.64 0.26 0.35
Decay 354.79 > 10 K 0.03 3.98 0.04 <

0.001
Decay-Win 199.02 1.48 0.23 26.57 0.23 0.16
Decay-Loss 324.56 >10 K 0.03 3.44 0.03 <

0.001
PVL-Delta 214.51 3428.92 0.01 1.04 0.01 <

0.001
PVL-Decay 360.18 >10 K 0.00 1.04 0.01 <

0.001
PVPE-Decay 201.45 5.00 0.16 17.08 0.15 <

0.001
Delta- 

Uncertainty
198.23 – 0.28 31.20 0.27 0.49

Control
Delta 206.77 3.24 0.31 34.86 0.33 0.55
Decay 356.18 >10 K 0.01 1.02 0.01 <

0.001
Decay-Win 211.29 31.03 0.31 33.74 0.32 0.44
Decay-Loss 315.28 >10 K 0.07 6.30 0.06 <

0.001
PVL-Delta 211.54 35.16 0.02 1.05 0.01 <

0.001
PVL-Decay 361.59 >10 K 0.02 1.00 0.01 <

0.001
PVPE-Decay 216.74 473.43 0.16 4.62 0.04 <

0.001
Delta- 

Uncertainty
204.42 – 0.28 22.41 0.21 0.02

Note: Values in parentheses are standard deviations.

Table 8 
Average best-fitting parameter and BIC values in Experiment 3.

Parameter: a or A c γ or Unc0 λ or wL or wUnc

Frequency
Delta 0.37 (0.39) 0.99 (1.06)
Decay 0.95 (0.19) 0.00 (0.01)
Decay-Win 0.15 (0.23) 0.53 (0.42)
Decay-Loss 0.63 (0.46)) 0.30 (0.64)
PVL-Delta 0.40 (0.39) 1.90 (1.90) 0.59 (0.48)
PVL-Decay 0.91 (0.26) 0.07 (0.50) 0.10 (0.29)
PVPE-Decay 0.17 (0.28) 0.66 (0.49) 0.20 (0.36) 0.26 (0.41)
Delta- 

Uncertainty
0.24 (0.33) 0.56 (0.59) 1.56 (1.79) 174.39 (306.87)

Control
Delta 0.43 (0.38) 0.75 (0.89)
Decay 0.95 (0.17) 0.00 (0.00)
Decay-Win 0.16 (0.24) 0.50 (0.56)
Decay-Loss 0.50 (0.47) 0.31 (0.44)
PVL-Delta 0.50 (0.39) 2.13 (2.03) 0.52 (0.49)
PVL-Decay 0.97 (0.12) 0.00 (0.03) 0.05 (0.22)
PVPE-Decay 0.16 (0.24) 0.66 (0.65) 0.23 (0.39) 0.25 (0.39)
Delta- 

Uncertainty
0.23 (0.30) 0.50 (0.64) 2.08 (1.97) 203.20 (309.41)

Note: Values in parentheses are standard deviations.
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context-dependent PVPE-Decay and Decay-Win models best reproduced 
the frequency effect observed under losses, which was similar to the 
gains condition in Experiment 1. In Experiments 1 and 3, where the only 
context given to participants was to minimize the number of points lost, 
our data suggest that participants used strategies represented by the 
either delta models such as the Delta and Delta-Uncertainty models, or 
contextual decay models such as the Decay-Win and PVPE-Decay 
models. The delta and contextual decay models may represent sepa
rate value-based versus frequency-based decision-making strategies, or 
modes that are modulated by the amount uncertainty associated with 
each strategy (Hu et al., 2025). One speculative interpretation of our 
findings is that in the abstract loss-minimization scenario it is more 
difficult for participants to perceive which losses are better than others. 
This may create uncertainty for the frequency-based strategy because it 
is unclear what outcomes are relative wins, and this could shift some 
participants toward a value-based strategy represented by delta models. 
Alternatively, when given a decision-making context that helps to frame 
smaller losses as wins or “bargains”, such as the shopping manipulation 
in Experiment 2, this may enhance confidence in the frequency-based 

system and lead to stronger frequency effects.
The Decay-Win model, which predicted the overall pattern of the 

data, and fit the majority of participants the best, makes three important 
assumptions about how people make decisions. First, it assumes similar 
behavior under gains and losses because it tracks the average reward 
provided across all options, and updates its expected values relative to 
that. This is similar to recent models that have demonstrated the 
importance of taking the reward context into account (Brochard & 
Daunizeau, 2024; Hayes & Wedell, 2023; Molinaro & Collins, 2023). 
Second, it assumes that people only attend to the relative valence of the 
reward (i.e. whether it was better than expected), and disregard the 
magnitude. Third, the model assumes that people only focus on the 
relative gains provided by each option, and they disregard the relative 
losses.

These last two assumptions are much stronger than the first one, and 
they should be further tested further in future work. However, these 
assumptions are consistent with the results of studies using tasks like the 
Iowa and Soochow gambling tasks (Bechara et al., 1994; Chiu et al., 
2008). A common finding in these studies is that people initially display 
a strong preference for the options that give consistent, small gains, and 
they disregard the rare losses provided by the frequently-rewarding 
options (Aïte et al., 2012; Byrne & Worthy, 2016; Don et al., 2022). 
In a recent paper from our lab, we found that a model that was a com
bination of the Decay-Win and Decay-Loss models, the Prediction-Error 
Decay model, provided the best fit to both younger and older adult data 
(Don et al., 2022). This model included the first two assumptions listed 
above, but it incremented +1 for a ‘win’ and − 1 for a ‘loss.’ Recent work 
has challenged the idea that ‘losses loom larger than gains’ (Yechiam, 
2019). For example, Hao and colleagues found that people learn better 
from wins than from losses (Hao et al., 2023). Our results suggest that 
relative gains, or positive outcomes, have greater weight in determining 
future choices than relative losses.

We also found that the Delta-Uncertainty model provided a good fit 
to the data, and good post-hoc recovery of the training data. However, it 
did not perform well in reproducing the critical frequency effect 
observed in Experiment 2. This model was formalized as an alternative 
way in which frequency effects might manifest, compared to the 
memory-based mechanisms assumed by the Decay model. Frequency 
effects could be caused by aversion to uncertainty. One of the key 

Fig. 13. Post-hoc simulated C choices on each CA test trial in Experiment 3, along with participants' data in the top left.

Table 9 
RMSD Values From Post-hoc Simulations, Exp. 3.

Frequency Control

CA Trials
Delta 0.044 0.034
Decay 0.049 0.108
Decay-Win 0.225 0.031
Decay-Loss 0.083 0.052
PVL-Delta 0.164 0.030
PVL-Decay 0.047 0.108
PVPE-Decay 0.079 0.040
Delta-Uncertainty 0.030 0.035
All Trials
Delta 0.065 0.059
Decay 0.250 0.290
Decay-Win 0.103 0.119
Decay-Loss 0.243 0.246
PVL-Delta 0.168 0.136
PVL-Decay 0.249 0.291
PVPE-Decay 0.101 0.119
Delta-Uncertainty 0.113 0.153
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differences between the Delta-Uncertainty and the Decay-Win models is 
that the Delta-Uncertainty model assumes a preference for more 
frequently encountered options simply because they have been selected 
more often, whereas the Decay-Win model values more frequent options 
because they have been rewarded more often. Although, this paper was 
aimed at testing the predictions of the Decay model under losses, future 
studies are likely needed with tasks that are better suited to address 
whether frequency effects are due to memory for past rewards or for 
familiarity due to more frequent selection. Future studies could also 
examine whether mere exposure to some options, without any associated 
outcomes, also produces frequency effects (Zajonc et al., 1974).

It is important to note that we used a model comparison approach 
where eight different models that made non-overlapping predictions 
about behavior in the task were compared. Four of these models were 
considered basic models, each containing only two free-parameters, thus 
they were not overly flexible (Roberts & Pashler, 2000). Although the 
Decay-Win model provided the best fit to a large proportion of partici
pants' data, a smaller group of participants' data were best fit by the 
Delta model, which assumes optimal responding on the critical CA 
transfer trials. An extended version of the Decay-Win model, the PVPE- 
Decay model, is flexible enough to also account for optimal behavior on 
the critical CA trials, similar to the Delta model. Depending on a given 
researcher's goals the PVPE-Decay model may be more useful than the 
Decay-Win model. If the goal is to describe participants' behavior, then 
the PVPE-Decay model is likely more useful than the simpler Decay-Win 
model, because its parameters can provide information about the degree 
of discounting of the magnitude of rewards and the attention to relative 
gains versus losses. Alternatively, if the researcher is attempting to test 
competing theories, simpler, more falsifiable models like the Decay-Win, 
Delta, and other models will be more useful, as the extended models we 
used are much more flexible.

It is also worth noting that we obtained a frequency effect under 
losses only in Experiment 2, where all outcomes were losses, and using a 
scenario that participants were probably familiar with (purchasing items 
and trying to minimize the cost). The frequency effect in Experiment 2 
was also weaker than in the gains condition for Experiment 1, as the 
proportion of C choices on critical transfer trials (0.44) was not signif
icantly different from 0.5; however, there was a significant difference 
compared to the control condition (0.57). We believe the comparison 
with the control condition is most appropriate, since option C was 
objectively more valuable than option A; however, the frequency effect 
observed in Experiment 2 did not pass the stronger test of departing 
significantly from chance behavior. We also reported comparisons 
across Experiments that suggest that the pattern of the data was 
consistent across Experiments 2 and 3, and a comparison of C choices in 
the frequency conditions from Experiments 2 and 3 did not reach sig
nificance. However, there was no difference in C choices between the 
gains condition from Experiment 1 and the frequency condition for 
Experiment 2, but there was a significant difference between Experi
ments 1 and 3, with the gains condition from Experiment 1 yielding the 
strongest frequency effect, and the frequency condition from Experi
ment 3 yielding the weakest effect.

The familiarity with the situation of purchasing dog food in Experi
ment 2 may have enhanced participants' ability to view smaller losses as 
relative gains or ‘wins.’ Losses may be viewed as more uniformly 
negative outcomes in situations where the context of the reward 
decision-making scenario is less clear. One limitation of the current set 
of experiments is that we did not run Experiment 1's losses condition 
with the dog food purchasing framing. Based on our interpretation of the 
data, we would predict a similar frequency effect as that in Experiment 
2, if the losses task was viewed as a shopping expenditure minimization 
task. Future work can more broadly test how framing loss-minimization 
scenarios in more interpretable ways enhances frequency effects and 
other reward processing mechanisms. For example, does familiarly 
framing a loss-minimization scenario improve memory for past 
outcomes?

It is also unclear exactly what information about past outcomes is 
stored in memory on each trial. Do participants simply remember out
comes as positive or negative experiences, or do they remember nu
merical information about the rewards received and compare it to a 
representation of the average reward at the time they are making 
choices? The superior fits of the Decay-Win over the Decay-Loss model 
also suggests that people focus more on positive outcomes than on 
negative outcomes. An open question is whether this is due to enhanced 
attention to positive outcomes, or better memory for positive outcomes. 
The current experiments cannot address these issues, but they could 
inspire clever experiments designed to address them in future work.

6. Conclusion

We tested the Decay model's prediction of a reversed frequency effect 
under losses, compared to one previously reported for gains (Don et al., 
2019; Don & Worthy, 2022; Hu et al., 2025). The Decay model's pre
dictions were supported only under a gains reward structure; the model 
performed very poorly under losses. We found a frequency effect under 
gains in Experiment 1, and under losses in Experiment 2. A Decay-Win 
model, that tracked the number of relative gains provided the best 
qualitive account of the observed data, and an extended model, the 
PVPE-Decay model accounted for alternative strategies used in the task. 
A basic Delta model, as well as the Delta-Uncertainty model provided 
good fits and post-hoc recovery for most trials; however, these models 
could not recover the frequency effects as well as the contextual decay 
models. Theoretically, this suggests that frequency effects can occur 
under gain-maximization and loss-minimization scenarios, that framing 
loss-minimization scenarios in familiar ways can cause people to attend 
more to the relative valence of each outcome, and attend less to reward 
magnitude, and that behavior is driven more by relative gains than by 
losses.

Data and Analysis Code Available at: https://osf.io/n43y5/? 
view_only¼6634bab4ba3741e890f9b7304aae9917

CRediT authorship contribution statement

Darrell A. Worthy: Writing – original draft, Visualization, Software, 
Methodology, Investigation, Formal analysis, Data curation, Conceptu
alization. Mianzhi Hu: Writing – review & editing, Validation, Project 
administration, Investigation, Formal analysis, Data curation, 
Conceptualization.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.cognition.2026.106449.

Data availability

I have shared the link to the data and code on the title page. Upon 
acceptance the data will be made publicly available.

References

Ahn, W. Y., Busemeyer, J. R., Wagenmakers, E. J., & Stout, J. C. (2008). Comparison of 
decision learning models using the generalization criterion method. Cognitive 
Science, 32(8), 1376–1402.

Aïte, A., Cassotti, M., Rossi, S., Poirel, N., Lubin, A., Houdé, O., & Moutier, S. (2012). Is 
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