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Recent work provides evidence for frequency effects during decision-making, where less-rewarding options that
are presented more frequently are selected more often than more-rewarding options presented less frequently.
This is predicted by the Decay but not the Delta reinforcement-learning (RL) model. The Decay model assumes
that higher-frequency options are preferred because their past outcomes are more available in memory than
those of lower-frequency options. However, most of this research has involved decision-making with gains,
rather than losses. In loss-minimization scenarios, the Decay model predicts a reversed frequency effect because it
assumes greater memory for losses, for the more frequently encountered alternatives. We tested this prediction in
three experiments and found that the Decay model provides a very poor fit to data in loss-minimization scenarios.
In Experiment 2, where participants tried to minimize their expenditures in a hypothetical shopping scenario, we
observed a modest frequency effect. In Experiments 1 and 3, where participants were asked to minimize losses as
points, without the hypothetical shopping scenario context, frequency effects were attenuated, but not reversed.
These effects were best-accounted for by two novel models, the Prospect-Valence Prediction-Error Decay model
(PVPE-Decay), which assumes relative rather than absolute processing of rewards, and the Delta-Uncertainty
model which assumes aversiveness to less frequent options that are higher in uncertainty. These results dove-
tail with recent work showing that people process reward outcomes in a context-dependent manner, and they
suggest smaller losses can be perceived as relative gains if framed in familiar scenarios involving cost-
minimization.

1. Introduction

There has been a long history in psychological research attempting to
elucidate how people's decision-making strategies differ when the
possible outcomes involve gains versus losses (Kahneman & Tversky,
1979; Gonzalez, Dana, Koshino, & Just, 2005; Pang, Blanco, Maddox, &
Worthy, 2017; Yechiam & Hochman, 2013; Zeif & Yechiam, 2022).
Research on framing and reflection effects has shown that people often
behave markedly different when the same decision-making problems are
framed in terms of gain-maximization versus loss minimization (Fischer
et al., 2008; Kiihberger, 1995; Kwak & Huettel, 2018; Gallagher &
Updegraff, 2012; Fagley & Miller, 1997). For example, the classic
behavioral economics literature suggests that people tend to be
risk-averse in the context of gains, but risk-seeking in the context of
losses (Kahneman & Tversky, 1979; March, 1996), although other re-
searchers have questioned this generality (Schneider & Lopes, 1986).

More recently, decision-making studies have uncovered intriguing
frequency effects, where people preferred an option that is slightly lower
in average reward value, if it has been presented more frequently than
the higher-average reward value alternative (Don, Otto, Cornwall,
Davis, & Worthy, 2019; Don & Worthy, 2022; Hu, Don, & Worthy,
2025).! However, this frequency-based preference has yet to be tested in
loss contexts. Interestingly, a popular reinforcement learning (RL)
model, the Decay model (Erev & Roth, 1998), which accurately predicts
frequency effects in gain contexts, predicts a ‘reversed frequency effect’
under losses. That is, while frequently presented items tend to be favored
in gain contexts, they may be avoided in loss contexts. In the current
work, we examine whether this novel framing effect exists in decision-
making when options are presented at unequal frequencies.

Previous research has shown that the Decay model correctly predicts
an effect of reward frequency in both binary- and continuous-outcome
tasks where all rewards were gains (Don et al., 2019; Hu et al., 2025).

* Corresponding author at: Texas A&M University, 4235 TAMU College Station, TX 77845-4235, USA.
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! We use the term ‘“frequency effect’ rather than ‘mere exposure effect’ because the tasks demonstrating frequency effects have involved reward-based outcomes,
rather than mere exposure. As stated by Zajonc (1974): “When stimulus presentation is accompanied by an opportunity of forming particular associative bonds, we no

longer have conditions satisfying the ‘mere’ exposure hypothesis.””
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This model assumes that reward values accumulate, leading to higher
expected value estimates for more frequently presented alternatives
(Erev & Roth, 1998; Worthy, Hawthorne and Otto, 2013). Following
Estes (1976), who showed extensive effects of reward frequency, Don
et al. (2019) conducted an experiment which clearly demonstrated the
impact of unequal reinforcement frequencies. In this study, participants
selected between options AB or CD on separate trials during training.
Options A and C were the best in each pair, providing a reward on 65%
and 75% of trials respectively. While option C had a higher average
reward rate, option A was associated with more cumulative reward
because there were twice as many AB trials as CD trials in the task.
During a later test phase, participants selected from options A or C, and
there was a bias toward option A, the more frequently presented alter-
native, even though it had a lower objective reward value. This effect
has been replicated using continuous rewards (Hu et al., 2025). There-
fore, it was theorized that the Decay model effectively assumes that,
when making a decision, people think of the previous rewards associated
with each option (Don et al., 2019). More frequently presented items
should be more available in memory, and those items will have a higher
expected value because the memories of those past outcomes will
accumulate, and more gains will be associated with them.

If cumulative rewarding experiences can make an option seem more
valuable than less frequently rewarded alternatives, do repeated losses
devalue frequently punished options more than those encountered less
often? For example, does paying per use for a service (e.g., a gym or
music app) feel more costly than a higher-priced monthly membership,
even if the latter could be objectively more expensive for infrequent
users? The Decay model makes an interesting prediction in these sce-
narios that involve losses. As will be shown below, it predicts a reversed
frequency effect, where the more frequently encountered item will be
chosen less often because more losses are associated with that option.
For the same reason that the Decay model predicts enhanced memory for
previous rewards in a gains context, it also predicts enhanced memory
for losses within a loss-minimization context. Knowing whether people
show the same frequency effect under gains and losses is important
because it helps us understand how people are remembering, or pro-
cessing, past outcomes. People could process all the losses received as
losses, or negative outcomes, which is assumed by the Decay model.
Alternatively, they might process losses within their context, and view
small losses as relative gains and large losses as relative losses (Brochard
& Daunizeau, 2024; Rakow, Cheung, & Restelli, 2020). The experiments
reported below will allow us to examine which of these two possibilities
is supported by the data.

In addition to examining the predictions of the Decay RL model, we
will also examine the predictions of six additional models. First, the
Delta model (Sutton & Barto, 1998, 2018; Steingroever, Wetzels, &
Wagenmakers, 2014), assumes that expected values are
recency-weighted averages of the past outcomes associated with each
alternative. Because the Delta model tracks average reward, it does not
assume that options that are more frequently presented will be valued
any more than less frequently presented alternatives. This model has
been shown to provide a poorer account of frequency effects than the
Decay model in tasks where the outcomes are gains (Don et al., 2019;
Don & Worthy, 2022). We will also fit two variants of the Decay model
that make different assumptions regarding how past outcomes are used
to compute expected values for each alternative: The Decay-Win model
(Hu & Worthy, n.d.) assumes that participants' behavior is guided by
relative ‘wins,” or better than average outcomes, while the Decay-Loss
model assumes that participants attend to relative ‘losses,” or worse
than average outcomes.

The Delta, Decay, Decay-Win, and Decay-Loss models each contain
two free parameters. We will also fit four additional models that are
more complex versions of the four models listed above; each of these
additional models contains four free parameters. The Prospect-Valence
Delta (PVL-Delta) and Prospect-Valence Decay (PVL-Decay) models
are extensions of the Delta and Decay models, respectively, that have
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two additional parameters that are motivated by Prospect Theory (Ahn,
Busemeyer, Wagenmakers, & Stout, 2008; Steingroever, Wetzels, &
Wagenmakers, 2013). These models include a shape parameter, which
allows for discounting of the magnitude of rewards, and a loss-aversion
parameter, which allows the model to give more weight to either gains
or losses. The Prospect Valence Prediction-Error Decay (PVPE-Decay)
model is a novel model we developed to include the Decay-Win and
Decay-Loss models nested as special cases. A similar model was used in
another recent paper from our lab, and it fit gambling task data much
better than the Delta model (Don et al., 2022). The PVPE-Decay model
includes a shape parameter, just like the PVL-Delta and PVL-Decay
models, and it also has a parameter that weights the effects of positive
versus negative prediction errors. The final model is the Delta-
Uncertainty model. This model tracks the uncertainty associated with
each option, which is operationalized as a combination of the variance
in rewards provided by each option, and how often each option has been
selected in the past (i.e. familiarity). The Delta-Uncertainty model is
designed to be better equipped to account for frequency effects than the
basic Delta model because it penalizes options that are higher in un-
certainty. A key difference between the models is that the Delta, Decay,
PVL-Delta, PVL-Decay and Delta-Uncertainty models all assume abso-
lute, or context-free processing of reward outcomes, while the Decay-
Win, Decay-Loss, and PVPE-Decay models all assume that rewards are
processed in a relative manner, by being compared to the average reward
provided across all outcomes. Comparing the fits of these two classes of
models will allow us to determine whether losses are processed in an
absolute or in a relative manner.

The models, along with their assumptions and predictions, will be
detailed in the Model Formalisms section below.

1.1. Model formalisms

All eight models compute expected values for each alternative pre-
sented in the task. These expected values are entered into the softmax
rule shown in in Eq. 1 to determine each model's probability of selecting
each j alternative on trial t:

BeEV;,
PlGy| = i o)
Z ePEV)e
1

Consistent with Yechiam and Ert (2007), g = 3°— 1;c € (0,5),
where c is an inverse temperature parameter that modulates how often
the option with the higher expected value is chosen. As ¢ approaches 0,
choices are more random, inversely, choices are weighted more heavily
toward the choice with the highest expected value as c increases.

1.1.1. Basic learning models

We divide our set of models into Basic models which have two free
parameters, and Extended models which have four. The first basic model
is the Delta model, which assumes that the expected value (EV) is
updated for each j option on each t trial according to Eq. 2:

EVjii1 =EVj;+ae (rt - EV”) o] (2)

Where [; is an indicator variable that is set to 1 if option j is chosen on
trial t, and O otherwise. This formulation ensures that only the expected
value for the chosen option is updated, and the other options, whether
seen or not, are not updated. Alpha (a) is the learning rate, or recency
parameter. Higher a values indicate greater weight to more recent
outcomes. To reduce multicollinearity between the learning rate and
inverse temperature parameters we limited the range of alpha to €
(0.01,0.99) in all of our simulations and model fits.

The next basic learning model is the Decay model. This model tracks
changes in expected value, but instead of updating the expected value by
the prediction error, the raw reward value is used (r;). On each trial, each
j option will be modified by a decay parameter (A; A € (0.01,0.99))
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regardless of whether the option was seen or chosen. Critically, this
means that the expected value for each option will decay over time and
only increase when a reward for that option is received. Thus, the more
frequent the reward, the greater the expected value. The Decay rule is
updated according to Eq. 3:

EVii;1 =EVj,e(1—-A)+r,e]; 3

Similar to Eq. 2, I;, is an indicator variable that equals 1 if j is chosen,
and zero otherwise. This means that all options decay toward zero on
each trial, but the expected value of the chosen option is incremented by
the reward given. As our simulations will confirm below, the Decay
model predicts a bias toward more frequently presented options when
gains are given, but a bias against more frequently presented options
when losses are given.

The first new model we present is the Decay-Win model (Hu &
Worthy, n.d.). This model is also a basic, two-parameter model, and it
assumes that rewards are processed relative to other rewards given in the
same context. To provide an estimate of the average reward provided
across all options, this model tracks the recency-weighted average
reward received on each trial according to Eq. 4:

AVi;y = AV, +A e (r,—AV,) @

The Decay-Win model also assumes that only the valence of the
outcome is used to guide choices, and specifically only the presence of
positive outcomes. If the current reward is greater than the average
reward (r, — AV,), then expected values are updated according to Eq. 5,
with I; equal to 1:

EVji —=EVj e (1—A)+1e] )

If the current reward is not greater than the average reward then the
indicator variable, I, is set to 0; all expected values decay, but no ex-
pected value is incremented unless the reward is greater than average.
The Decay-Win model thus assumes that a trial is considered a ‘win’ if
the reward surpasses a threshold of being larger than average. The
model does not track any information about the specific magnitudes of
the rewards provided, it simply tracks the number of positive outcomes
associated with each option. The Decay-Win model makes the same
predictions for tasks involving gains or losses. Unlike the standard Decay
model, the Decay-Win model does not predict a reversed frequency ef-
fect with losses but instead predicts a bias toward more frequently
presented options in both gain and loss conditions.

The final Basic learning model, the Decay-Loss model assumes the
opposite strategy of the Decay-Win model. Whereas the Decay-Win
model tracks how often each option has provided a ‘win,” or better
than average reward, the Decay-Loss model tracks how often each op-
tion has provided a ‘loss,” or worse than average reward. If the current
reward is less than the average reward provided by Eq. 4, then expected
values are updated according to Eq. 6, with I; equal to 1:

BV — BV (1-A) -1} ©

If the current reward is not less than the average reward then the
indicator variable, I;, is set to 0; all expected values decay upwards to-
ward zero, but no expected value is decremented unless the reward is
less than average. Thus, the Decay-Loss model assumes a loss-avoidant
strategy, whereas the Decay-Win model assumes a gain-seeking strategy.

1.1.2. Extended learning models

As stated above, we also fit four models that were extensions of the
basic models. The PVL-Delta model is an extension of the Delta model
that includes two additional parameters that allow the model to account
for discounting of large magnitude rewards, and for greater attention to
losses versus gains. Rather than use the actual reward received on each
trial (r¢) in Eq. 2, the PVL-Delta model transforms the outcome received
on trial t into a representation of subjective utility (u):
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Here, the shape parameter y (0 < y < 1) determines the shape of the
utility function. When y = 1, all rewards are processed veridically, but
as the shape parameter approaches 0 reward magnitudes are discounted.
When y = 0, all rewards are processed as the same amount (1), and the
magnitude is completely disregarded. The loss aversion parameter 1 (0
< 4 < 5) allows for greater learning from losses or gains. When this
parameter is set to 1, losses and gains receive equal weight, with values
less than 1 indicating greater attention to gains than losses, and values
greater than 1 indicating greater attention to losses than gains.

The utility is then entered into a Delta learning rule to update the
expected value for the chosen option:

EVj,t+1 = EVj.t +ae (ut 7E‘/j_t) . I; ®

As in Eq. 2, I;, is an indicator variable that equals 1 if option j was
chosen on trial t, and 0 otherwise.

The PVL-Decay model also uses Eq. 7 to compute the utility of each
outcome. The utility is then entered into a decay rule according to:

EVieo1 =EVj,e(1-A)+ucel; )

Eq. 9 is identical to Eq. 3 except that actual reward outcome is
replaced with subjective utility (u,).

The third extended model, the PVPE-Decay model, is an extension of
both the Decay-Win and Decay-Loss models, and each of these models
are nested within the PVPE-Decay model as special cases. Like these
simpler models, the PVPE-Decay model also assumes that rewards are
processed relative to the overall average reward provided across all
options, and the average value (AV,) is computed using Eq. 4. The AV is
then used to compute the subjective utility of the outcome according to:

(A —-wp)e(rn—AV)
U = { wil(re — AV)['

if (r—AV,) >0

if (r—AV,) <0 an

This utility function is similar to the utility function for the PVL-Delta
and PVL-Decay models, except that it uses relative reward (r, — AV,),
rather than the actual reward (r;). Another difference is that this model
uses a weight parameter for losses versus gains w;, (0 < w; < 1). This
allows the PVPE-Decay model to include the Decay-Win model nested as
a special case when w;, = 0 and y = 0, and the Decay-Loss nested as a
special case when w;, =1 and y = 0.

Finally, the fourth extended model we used is the Delta-Uncertainty
model. We fit this model because it is possible that frequency effects are
due to lower uncertainty associated with the more frequent alternatives,
compared to items encountered less often (Hu et al., 2025). This model
learns expected values in the same way as the basic Delta model; how-
ever, the prediction error on each trial is used to track the variance, or
uncertainty in rewards for the chosen option. One additional free
parameter, Uncy, represents the initial uncertainty in reward for each
option. This parameter is used to initialize uncertainty values for each j
option according to:

UVjo = Unc? 1)

The uncertainty value for the chosen option is then updated on each
trial according to:

UVien = UVje+as [(r—EVie) ' = UV ] o a2)

In Eq. 12, the squared prediction error from the basic Delta model is
used to updated the uncertainty associated with the chosen option. We
allowed the initial uncertainty parameter to vary from 0.5 to 5, which is
greater than the standard deviation of rewards for each option. There-
fore, the UVs associated with each option will generally decrease as they
are selected more frequently. The uncertainty values were then con-
verted into uncertainty estimates by taking their square root, and
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dividing by the number of times the chosen option had been selected:

v UVj;
— 13)
Ve

Dividing by the number of times each option has been chosen, allows
the model to further reduce uncertainty associated with more frequent
options.

The uncertainty values were then subtracted from the expected
values, with a free parameter, wyn., weighting the degree to which the
participant avoided options with high uncertainty:

Ung;, =

QVj, = EVj, — Uncj; ® Wync (14)

These Q-values were then used in Eq. 1, in the place of expected
values. Given that these uncertainty values were usually smaller than
one, we allowed this free parameter (wyy) to vary between 0 and 1000
to allow the model to give greater weight to uncertainty than to expected
values when this parameter was large. When wy,. equals zero, the Delta-
Uncertainty model is identical to the basic Delta model.

To summarize the Delta, Decay, PVL-Delta, PVL-Decay, and Delta-
Uncertainty models all assume absolute, context-free processing of the
gains or losses given by each option, while the Decay-Win, Decay-Loss,
and PVPE-Decay models assume relative, or context-dependent pro-
cessing where the outcomes provide by each option are processed
relative to the overall average reward provided across all options. In the
next section, we will show that the relative-reward processing models
make similar predictions across gain-maximization and loss-
minimization tasks; however, two of the absolute-reward processing
models, the Decay and PVL-Decay models, predict a reversed effect of
frequency under losses compared to gains. We will then present three
experiments with human participants and evaluate which model pro-
vides the best fit and post-hoc recovery of participants' behavior.

1.2. A priori simulations

We simulated each of the above models in a task that was modified
from that of Don et al. (2019), under both gains and losses conditions.
There were a total of four options that the simulated agent chose from on
different trials, labeled options A-D. The rewards given by each option
were continuous and drawn from normal distributions, with the mean
reward values in the gains task for options A-D equal to [0.65, 0.35,
0.75, 0.25]. The mean values for options A-D in the losses task were
[-0.35, —0.65, —0.25, —0.75]. The values for the losses condition were
simply the values from the gains condition subtracted by one. The
standard deviation around the mean reward value was 0.43 for all op-
tions. This value was calculated based on the standard deviation from
the binomial distribution for option C, the highest valued option: (0.7 *
0.3)"0.5 = 0.43. Using this value for the standard deviation around each
mean value made the reward structure roughly equivalent to a
continuous-rewards version of the binary-outcome task from Don et al.
(2019), and was also implemented in Hu et al. (2025) and Hu & Worthy
(n.d.).

For all models, expected values for all j options were initialized at the
first reward or utility value given on trial 1. This restricted the initial
expected values to be on the same scale as the rewards or utilities used to
update the model's expected values on each trial. During training, the
models selected from options AB or CD on different trials. There were
100 AB trials, and 50 CD trials. The trial types were interspersed
randomly for each simulation. During the test phase, the models selected
from novel option pairs, CA, CB, AD, and BD, each for 25 trials. The CA
test trials are of most interest because the models must choose between
the two high-value options within each training pair. Although option A
has a lower mean value of 0.65, it is selected more than option C, which
has a higher average value of 0.75, in a binary outcome task (Don et al.,
2019; Don & Worthy, 2022).

We simulated each task 1000 times with each model, with parameter
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values randomly drawn from a uniform distribution across the ranges
presented above. Fig. 1, shows the average proportion of C choices on
the critical CA test phase trials, averaged across all simulations for each
model.

The Delta and PVL-Delta models clearly predict a preference for the
more rewarding option C, across both conditions. The Decay and PVL-
Decay models predict fewer C, or more A choices in the gains condi-
tion; however, as expected, these models predict more C choices in the
losses condition. As described above, the Decay model predicts a fre-
quency effect under gains, but a reversed frequency effect under losses,
and the PVL-Decay model makes similar predictions. The Decay-Win
model predicts a frequency effect across both the gains and losses con-
ditions. In contrast, the Decay-Loss model predicts a reversed frequency
effect in both gains and losses conditions, where the simulated agents
consistently preferred option C over option A in both conditions, similar
to the Delta and PVL-Delta models. Finally, the PVPE-Decay and Delta-
Uncertainty models predict roughly equal choices of A and C, because
the PVPE-Decay model is flexible enough to mimic both the Decay-Win
and Decay-Loss models, and the Delta-Uncertainty model can mimic the
Delta model if the weight to uncertainty is low, but it can also predict
frequency effects if the weight to uncertainty is high.

2. Experiment 1

In Experiment 1, we ran participants in the two conditions simulated
above to examine whether they displayed a reversed frequency effect in
the losses condition, as predicted by the Decay model, or whether par-
ticipants showed a similar frequency effect under both gains and losses,
where they preferred the more frequently rewarded alternative during
the test phase.

2.1. Method

2.1.1. Participants

We conducted an a priori power analysis using G*Power software
(Kang, 2021) to estimate the appropriate sample size to conduct t-tests
on the proportion of C choices made on the critical test trials between
the gains and losses conditions. Assuming an effect size of d = 0.5, an
alpha threshold of 0.01,> we would need 96 participants in each con-
dition for 80% power. Based on past studies from our lab, we reasoned
that some participants may show little evidence of learning during the
training phase, particularly in the loss-minimization conditions which
are sometimes confusing to participants. Therefore, we planned to run
approximately 120 participants in each condition to account for “noise”
in the data from participants who did not sufficiently learn which
choices were optimal during training.

Our final sample size was 252 participants. Participants were
randomly assigned to one of the two between-subjects conditions, gains
or losses: There were 120 participants in the Gains condition (83 fe-
males, 35 males, 2 other), and 132 in the Losses condition (85 females,
46 males, 1 other).

2.1.2. Materials and procedure

Participants performed the task on PC computers in a laboratory
setting. They first completed a series of questionnaires which were
added as part of a pilot study, and will not be analyzed here. These scales
are listed and briefly described in the Supplemental Materials.

2 We planned to conduct Bayesian t-tests, which are generally more conser-
vative in rejecting the null hypothesis than frequentist t-tests with alpha = 0.05
(Wetzels et al., 2011), therefore we used an alpha level of 0.01. We acknowl-
edge that conducting a fully Bayesian power analysis would have been more
appropriate, but we are unaware of any software similar to G*Power for
Bayesian power analysis, and we felt conducting a frequentist power analysis in
this manner suited our purpose.
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Fig. 1. Predicted proportion of C choices on CA test phase trials for a priori simulations for each model. Black horizontal line indicates equal choices for options A

and C.

Participants then performed the main task. During the first 150 trials,
referred to as the training phase participants selected from options A-B
or from options C—D. In the gains condition, option A provided an
average reward of 0.65 points, while option B had an average reward of
only 0.35 points. Within the CD pair, option C was dominant over option
D, with an average reward of 0.75 compared to 0.25 for D. Rewards were
drawn on each trial from continuous normal distribution with a standard
deviation of 0.43. This value was based on the standard deviation from a
binomial distribution for option C (0.75 * 0.25)"0.5, and our goal was to
create a continuous version of the binomial task used in Don et al.
(2019). Thus, the average reward values and the variance are roughly
equivalent to that in Don et al's, 2019 study, although we used
continuously distributed, rather than binomial rewards in the present
study. This reward structure has also been shown to produce regular
frequency effects in gains contexts (Hu et al., 2025).

The losses conditions were created as analogues of the gains task,
with average rewards for decks A-D equal to: —0.35, —0.65, —0.25,
—0.75. The variance in rewards was the same as in the gains condition.
Participants were told that they would lose points on most trials, and
that their goal was to lose as few points as possible. It is important to
note that gains and losses were sometimes given in both conditions, due
to the high variance in rewards. Fig. 2 shows example screenshots from
the experiment. Participants were allowed to make choices at their own
pace, and they were not given information about how many trials were
left in the experiment. They were only shown the outcome for the option
selected on each trial; foregone outcomes were not presented.

Participants in the both conditions performed twice as many AB
training trials as CD trials (100 compared to 50). AB and CD trials were
randomly interspersed across training. In the transfer phase participants
completed 25 trials of each of the remaining combinations of options:
CA, CB, AD, and BD. These trial types were randomly interspersed across
the 100-trial transfer phase. Feedback was given on each trial of the
training phase, but for the test phase, participants were not shown how
many points they earned. In the gains condition, participants were told
that their job was to figure out which option within each pair was most

N

Y I
Training: Trials 1-150 Test: Trials 151-250

Fig. 2. Example screenshots for the training and test phases of the experiment.

rewarding. In the losses condition, participants were told that their job
was to figure out which option gave the smallest losses. For the transfer
phase, participants were told that they would not be shown how many
points they received after each trial, but to try to pick the best option
based on what they had learned so far. Participants were not given a
specific goal, and they were not given monetary rewards in the task, but
were simply asked to do their best to pick the most rewarding option.

2.1.3. Data analysis

We ran Bayesian general linear mixed-effects regression models to
analyze the data using the R package brms (Biirkner, 2017). Brms pro-
vides parameter estimates for both fixed and random effects. We
examined the fixed-effect coefficient values from models where condi-
tion variables (e.g. reward condition) were used as predictors for the
proportion of optimal choices. We considered an effect to exist or be
‘significant’ if the 95% highest credible interval (HCI) for the predictor
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did not include zero (Byrne et al., 2020; Nalborczyk, Batailler, Loeve-
nbruck, Vilain, & Biirkner, 2019).

We also conducted Bayesian t-tests on the key dependent variables
such as the proportion of C choices on the critical CA transfer trials. We
used JASP software for our Bayesian analysis (jasp-stats.org; version
0.17.2.1) using the default Cauchy prior (0.707). We report Bayes Fac-
tors in terms of evidence supporting the alternate (BF;() hypothesis. A
Bayes Factor (BFjp) of 3 or more is considered to indicate moderate
support for the alternate hypothesis, and a Bayes Factor (BF;) less than
1/3 is considered moderate support for the null (Jeffreys, 1961;
Wagenmakers et al., 2018), although Bayes Factors can be interpreted
continuously on an odds scale. For example, a Bayes Factor (BFjo) of 3
suggests that the alternate hypothesis is three times more likely than the
null hypothesis, given the data.” Bayes Factors greater than 10 are
considered strong support for the alternate hypothesis, and Bayes Fac-
tors greater than 100 indicate extreme support (Jeffreys, 1961;
Wagenmakers et al., 2018).

2.2. Results

We first computed the proportion of optimal choices during training,
or the proportion of A and C choices in the AB and CD choice pairs,
respectively. These are shown in Fig. 3a. We ran a Bayesian multilevel
logistic regression model that predicted whether participants made the
optimal choice on each trial (coded as 1 for optimal, O for not-optimal)
based on condition, with random intercepts for each participant. There
was a significant effect of reward type, b = —0.42, SE = 0.12, 95% HCI =
[—0.65, —0.19], OR = 0.65, which suggests that learning was better in
the gains compared to the losses condition. The odds ratio for selecting
the optimal choice decreased by a factor of 0.66 for the losses compared
to the gains condition. A similar model that included the interaction
term between trial type (AB coded as 0; CD coded as 1) and condition
indicated that there was a significant interaction, b = 0.20, SE = 0.05,
95% HCI = [0.11, 0.30], OR = 1.21. This suggests that for participants in
the losses condition, the odds of selecting the optimal choice increased
by a factor of 1.21 on CD, compared to AB trials. This could have been
due to the larger difference in average loss between options C and D than
A and B, but it is notable that learning was equivalent for AB and CD
pairs in the gains condition.

We next examined the proportion of C choices on the critical CA test
trials, which are shown in Fig. 3b. Visual inspection of the graph sug-
gests that there was a frequency effect in the gains condition, where
participants selected option C less often than chance. A one-sample
Bayesian t-test with 0.5 set as the test value indicated a significant dif-
ference, BF;9 = 20.27, d = 0.31. However, in the losses condition par-
ticipants selected from options A and C roughly equally, on average. A
one-sample Bayesian t-test indicated support for the null hypothesis
that the proportion of C choices did not differ from 0.5, BF;9 = 0.11,d =
0.05. We ran a similar Bayesian multilevel model as in the training data
above, with C choices (coded as 1, 0 for A choices) regressed on the
effect of condition, with random intercepts for participants. This model
suggested no difference based on condition, b = 0.48, SE = 0.28, 95%
HCI = [-0.06, 1.03], OR = 1.61. A Bayesian independent samples t-test
on the average proportion of C choices between conditions did not
indicate at least moderate support for either the null or alternate hy-
pothesis, BFjp = 0.891, d = 0.25. Thus, although the proportion of C
choices were significantly below chance in the gains condition, the
difference between the gains and losses condition was not significant,
and participants selected option A slightly more than C in the losses
condition.

Fig. 4 shows the distribution of C choices on the critical CA test trials.
Values to the left of each plot indicate a preference for A, the more

3 Bayes Factors for the alternate and null hypotheses are inverse of each other
(BF19 = 1/ BFgy).
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frequently rewarded option, and values on the right indicate a prefer-
ence for C. Interestingly the modal value in each condition is close to 0%
C choices, indicating that many participants showed a strong effect of
frequency in both conditions. However, in the losses condition there are
considerably more participants who selected C almost exclusively, than
there are in the gains condition, as indicated by the cluster of partici-
pants to the extreme right, within the losses plot. There are also more
losses participants who chose A and C roughly equally often.

2.2.1. Model fits

For each model, we fit each participant's data individually by esti-
mating maximum likelihood for the eight models presented above. All
choices except for the very first trial were fit. To compare the models, we
computed the BIC value for each model (Schwarz, 1978), which pe-
nalizes models based on their number of free parameters. Table 1 shows
the average best-fitting parameter values, along with the average BIC
values. Lower BIC values indicate a better fit, and BIC values can be
transformed into Bayes Factors, favoring one model over the other by
exponentiating the difference between the poorer fitting model and the
best-fitting model and dividing by two (Wagenmakers, 2007). This
means that a BIC difference of 3 indicates moderate support for the
better fitting model (BF;¢ = 4.48); a BIC difference of 5 indicates strong
support (BFjp = 12.18). Thus, BIC differences less than 3 indicate that
neither model is substantially more supported by the data than the
other, and these values are presented in bold in Table 1 to indicate that
the model did not fit significantly worse than the best-fitting model. We
also conducted group-level random-effects Variational Bayesian model
selection (VBMS; Stephan, Penny, Daunizeau, Moran, & Friston, 2009),
which treats models as random variables that may vary across in-
dividuals. In this framework, model frequencies are estimated by fitting
a Dirichlet distribution, which is then used to define a multinomial
distribution representing the probability that any given model generated
the data for a randomly selected subject. Specifically, the posterior
Dirichlet parameters, a, represent the estimated population frequency
with which each model generated individual data. The posterior
multinomial parameter, ri, describes the probability that data from a
randomly chosen subject is generated by a specific model k. Finally, the
exceedance probability, ¢k, quantifies the likelihood that a particular
model k is more likely than any other model in the comparison set to
generate group-level data.In both conditions, the Decay-Win, PVPE-
Decay, and Delta-Uncertainty models provided a substantially better fit
to the data, on average, than any of the other models, with the exception
of the Decay model in the gains condition. The PVPE-Decay and Delta-
Uncertainty models fit substantially better than the other extended
models, the PVL-Delta and PVL-Decay models. In both conditions, the
Decay-Win model provided the best fit of the Basic, two-parameter
models; however, the Delta and Decay models fit almost as well in the
Gains condition. In the Losses condition, the PVPE-Decay model fit
substantially better than both the Delta (BFjp = 25.79) and Decay
models (BFjgp > 10 K). Thus, two of the relative-reward processing
models, Decay-Win and PVPE-Decay, were the best-fitting basic and
extended models. Other than the Delta-Uncertainty model, the absolute-
reward processing models received less support, particularly in the
Losses condition.

The third column in Table 1 lists the average BIC weights for each
model (Wagenmakers & Farrell, 2004). These values are similar to the
proportion of data sets best fit by each model, however, some weight is
given to models that fit nearly as well as the best-fitting model. Inter-
estingly, the Decay-Win model has the highest BIC-weight in each con-
dition, while the PVPE-Decay model receives less weight. This pattern is
also replicated in VBMS results, which suggests that a substantial pro-
portion of participants' data are best fit by the Decay-Win model alone,
and the inclusion of the shape and weight to relative losses parameters
does not provide a substantially better fit. Following the Decay-Win
model, the Delta model had the next highest BIC-weights and VBMS
indices in both conditions, and the Decay model received more weight in
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Fig. 4. Distributions of the average proportion of C choices on the critical CA test trials for participants in each condition in Experiment 1.

the gains than in the losses condition.

Table 2 lists the average parameter values for each model. Because
the PVPE-Decay model provided the best fit, and includes the Decay-Win
and Decay-Loss models as special cases, we focus on its best-fitting
parameter estimates. Of interest, the weight to relative losses param-
eter (wy) is below 0.5 in each condition, indicating a stronger reliance on
relative gains than relative losses. Fig. 5 shows the distribution of best-
fitting parameter values for each of the four parameters from the PVPE-
Decay model. The distribution of best-fitting inverse-temperature, or
sensitivity parameters (c) is fairly normally distributed (Fig. 5b). How-
ever, there is strong bimodality in the distributions of the other three
parameters, where there are large subclusters of participants whose data
are best fit by extreme values at the parameter bounds. For the decay
parameter (Fig. 5a) this distribution suggests that many participants had
little or no decay of past outcomes, while another group of participants
showed almost complete decay of past outcomes, where their decisions
were based mainly on the outcome from the last trial. For the shape
parameter (Fig. 4c) a value of 1 indicates full processing of the

magnitude of relative rewards, while values of 0 indicate that all reward
magnitude are processed as either +1 or — 1, depending on whether the
relative reward is positive or negative, as in the Decay-Win and Decay-
Loss models. Finally, the distribution of weight-to-loss parameters sug-
gests that a substantial proportion of participants attended solely to
relative gains or solely to relative losses, similar to the strategy assumed
by the Decay-Win and Decay-Loss models. Overall, the pattern suggests
that the PVPE-Decay model is flexible enough to account for a variety of
strategies, and that a substantial portion of participants were using
specific strategies assumed by the basic Decay-Win or Decay-Loss
models.

2.2.2. Post-hoc simulations

We next conducted post-hoc simulations using the best-fitting pa-
rameters for each model (Ahn et al., 2008; Busemeyer & Stout, 2002).
For each participant's best fitting parameters, we conducted 200 simu-
lations and averaged the model's predicted choices across those simu-
lations. Fig. 6 shows the average proportion of C choices on CA test
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Table 1
Average best-fitting BIC values and BIC-weights in Experiment 1.
Mean BFBestModel, BIC- VB a VB VB ¢k
BIC M weight Tk
Gains
Delta 285.75 136.32 0.18 25.51 0.20 0.39
Decay 278.12 3.00 0.17 20.79 0.16 0.10
Decay-Win 275.92 - 0.18 26.56 0.21 0.50
Decay-Loss 352.09 >10 K 0.08 8.52 0.07 <
0.001
PVL-Delta 290.47 1442.75 0.10 11.32 0.09 <
0.001
PVL-Decay 285.37 112.73 0.12 15.25 0.12 0.01
PVPE-Decay 277.69 2.42 0.06 7.73 0.06 <
0.001
Delta- 278.82 4.26 0.10 12.32 0.10 <
Uncertainty 0.001
Losses
Delta 310.41 25.79 0.28 46.61 0.33 0.41
Decay 348.40 >10K 0.08 6.98 0.05 <
0.001
Decay-Win 304.61 1.41 0.31 48.84 0.35 0.59
Decay-Loss 348.79 >10K 0.11 12.48 0.09 <
0.001
PVL-Delta 315.99 419.89 0.02 1.09 0.01 <
0.001
PVL-Decay 358.70 >10K 0.03 1.24 0.01 <
0.001
PVPE-Decay 303.91 - 0.10 12.44 0.09 <
0.001
Delta- 308.50 4.26 0.10 10.32 0.07 <
Uncertainty 0.001

Note: Bayes Factors in bold indicate a model fit close to the best-fitting model.

Table 2
Average best-fitting parameter and BIC values in Experiment 1.

Parameter aorA c 7 or Uncy A OF Wi, OF Wync
Gains

Delta 0.33 (0.35) 1.49 (1.06)

Decay 0.23 (0.31) 0.45 (0.39)

Decay-Win 0.17 (0.23) 0.42 (0.35)

Decay-Loss 0.74 (0.35) 0.14 (0.22)

PVL-Delta 0.33 (0.36) 1.36 (0.89) 0.50 (0.43) 2.73(1.41)
PVL-Decay 0.25 (0.31) 0.43 (0.34) 0.57 (0.44) 2.47 (1.36)
PVPE-Decay 0.16 (0.24) 0.61 (0.41) 0.26 (0.34) 0.29 (0.33)
Delta-Uncertainty 0.31 (0.32) 1.05 (0.78) 1.53 (1.84) 106.31 (273.26)
Losses

Delta 0.31 (0.36) 1.43 (1.33)

Decay 0.68 (0.38) 0.22 (0.29)

Decay-Win 0.22 (0.32) 0.29 (0.27)

Decay-Loss 0.69 (0.37) 0.22 (0.30)

PVL-Delta 0.31 (0.37) 1.26 (0.81) 0.46 (0.44) 2.63 (1.35)
PVL-Decay 0.70 (0.37) 0.22 (0.27) 0.74 (0.41) 2.33(1.31)
PVPE-Decay 0.24 (0.33) 0.54 (0.35) 0.27 (0.37) 0.42 (0.37)
Delta-Uncertainty 0.24 (0.32) 0.92 (0.85) 1.35 (1.69) 180.52 (354.64)

Note: Values in parentheses are standard deviations.

trials, along with the same data for participants. Qualitatively, the
Decay, Decay-Win, PVL-Decay, and PVPE-Decay models are the only
ones that can reproduce the frequency effect within the gains condition,
where participants select option C less than option A. For the losses
condition, the PVPE-Decay model appears to come closest to repro-
ducing the observed proportion of C choices, with the Decay-Win model
underpredicting C choices, and the other models overpredicting C
choices. Despite fitting the data well, the Delta-Uncertainty model did
not reproduce the frequency effect.

To quantify each model's performance, we computed the root mean
squared deviation between each model's predicted choice proportions to
those observed from human participants, across all trials. For each trial
type we computed each model's predicted proportion of optimal choices
in the order that they were presented. For example, across all model
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simulations we computed the average C choices made on the first CA
trial, then choices for the second CA trial and so on, for all trial types.
These RMSD values are shown in Table 3. For CA trials, the PVPE-Decay
model had the lowest RMSD values in the gains condition, and it had
slightly higher RMSD than the PVL-Decay model in the losses condition.
In the gains condition, where a significant frequency effect was
observed, the Delta and PVL-Delta models had the poorest RMSD.
Table 3 also lists the average RMSD values across all six trial types.
The Decay-Win and PVL-Decay models had the lowest overall RMSD in
the gains condition, followed closely by the PVPE-Decay, and basic
Decay models. Interestingly, in the losses condition, the Delta-
Uncertainty model had the lowest overall RMSD, followed by the
basic Delta and PVL-Delta models. Thus overall, the PVPE-Decay model
provided the best post-hoc recovery of the frequency effect observed in
the gains condition, and it provided good recovery across all trials. The
Decay-Loss model provided the worst post-hoc recovery across all trials,
and most of the other models provided a good account for trials other
than the critical CA trials in the gains condition. The RMSD values for
each individual trial type are shown in the Supplemental Materials
(Table S1), along with plots of the observed and simulated data.

2.3. Discussion

The results of Experiment 1 clearly do not support the prediction of a
reverse frequency effect, made by the Decay and PVL-Decay models in
the losses condition. However, while we did not observe a reverse fre-
quency effect under losses, we also did not observe a strong frequency
effect. One possibility for the ambiguous results in the losses condition is
that we observed significantly poorer learning compared to the gains
condition. In an effort to improve learning, and enhance participants'
understanding of the purpose of the task, we designed a second exper-
iment, which included only the losses conditions, where we created a
more engaging cover story where participants were told to imagine that
they were workers in a dog shelter, and on each trial they picked from
one of two stores from which they could purchase dog food for the
shelter. Their goal, on each trial, was to try to pick the store that would
provide the cheapest food, so as to minimize the total money spent on
dog food.

We predicted that this would be a more engaging cover story, or
scenario for the task, and that participants would be more likely to
understand that large numerical values were worse than small numeri-
cal values, than in Experiment 1. We also modified the reward structure
in Experiment 2, so that all outcomes were losses, whereas in Experi-
ment 1 there were some rare gains in the losses condition, and rare losses
in the gains condition. We believed this modification might further
strengthen participants' understanding of the task.

3. Experiment 2

Experiment 2 included two conditions, both with a losses reward
structure: a control condition where there were equal AB and CD trials
during training, and a frequency condition similar to Experiment 1. In
the control condition, we predicted that people would show a preference
for option C on CA test trials, as found in prior work (Don & Worthy,
2022).

3.1. Method

3.1.1. Participants

Based on the power analysis reported for Experiment 1 above, we
planned to run approximately 120 participants in each condition. Our
final sample size was 244 participants, 122 in each condition. Within the
control condition there were 79 females, 42 males, and one other; within
the frequency condition there were 73 females, 48 males, and one other.
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3.1.2. Materials and procedure

Participants performed the experiment on the same computers and
used the same software as in Experiment 1. Fig. 7 shows example screen
shots from the training phase of the experiment. Participants were told
that they would be playing the role of a person who works at a dog

shelter who is tasked with buying food for the dogs each day. On each
trial they picked one of two options that represented the stores they
could buy from. Each time they made a choice they were shown how
much the dog food cost that day. Their job was to figure out which
option in each pair had the lowest price. The total amount spent was
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Table 3
RMSD values from Post-hoc simulations.

Gains Losses
CA Trials
Delta 0.144 0.057
Decay 0.088 0.061
Decay-Win 0.080 0.124
Decay-Loss 0.124 0.061
PVL-Delta 0.133 0.065
PVL-Decay 0.081 0.028
PVPE-Decay 0.037 0.032
Delta Uncertainty 0.116 044
All Trials
Delta 0.073 0.051
Decay 0.058 0.101
Decay-Win 0.056 0.079
Decay-Loss 0.171 0.104
PVL-Delta 0.072 0.051
PVL-Decay 0.056 0.056
PVPE-Decay 0.058 0.069
Delta Uncertainty 0.082 0.048

Total: -111.63

Option A Option S

Please choose an option by clicking on one of the
boxes above

Total: -135.27

Option K Option L

Please choose an ogh(m ?y clicking on one of the
boxes above.

Fig. 7. Example screenshots for Experiment 2.

shown at the top, and participants were told to try their best to minimize
that amount.

The trial structure of the task was identical to that from Experiment
1. In the control condition, participants performed 75 AB trials and 75
CD trials during training, while participants in the frequency condition
performed 100 AB trials and 50 CD trials. Trial types were randomly
interspersed and randomized separately for each individual. During the
test phase all participants performed 25 trials of each of the novel trial
types: CA, CB, AD, and BD, in a randomly interspersed order.

The reward structure was a linear transformation of the losses
reward structure used in Experiment 1. Average reward values for op-
tions A-D were multiplied by 10, and then 10 points was subtracted from
each value. These yielded average losses for options A-D of (—$13.50,
—$16.50, —$12.50, and -$17.50). The standard deviation in rewards
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from Experiment 1 was 0.43, and this value was multiplied by 10 for the
current experiment, yielding a standard deviation around the mean
reward values of 4.3. Options A and C had the lowest average cost for
dog food within each training pair, and option C had the lowest cost
overall (—$12.50 versus -$13.50 for A).

3.1.3. Data analysis
We used the same data analysis methods as reported in Experiment 1.

3.2. Results

Fig. 8a shows the proportion of optimal choices during the training
phase. A Bayesian mixed effects logistic regression model predicting
optimal choices during training from condition, with random intercepts
for participants, indicated no effect of condition, b = —0.07, SE = 0.14,
95% HCI = [—-0.34, 0.22], OR = 0.93. We also ran a similar model
predicting optimal choices from the interaction between condition and
trial type, with random intercepts for participants. There was no inter-
action effect, b = —0.00, SE = 0.05, 95% HCI = [—0.09, 0.10], OR =
0.99. Thus, there was no difference between conditions, and participants
in each condition showed similar levels of learning for each trial type.

We next examined the proportion of C choices on the critical CA
transfer trials, which are shown in Fig. 8b. A Bayesian mixed effects
logistic regression model with optimal choices predicted from condition,
with random intercepts for participants, indicated a significant effect of
condition, b = 1.04, SE = 0.35, 95% HCI = [0.37, 1.77], OR = 2.86. The
odds ratio indicates that on any CA test trial, the odds of selecting option
C were 2.86 times higher for participants in the control condition. A
Bayesian t-test with average C choices as the dependent variable in-
dicates a moderate effect of condition, BF;p = 6.33, d = 0.37. Partici-
pants in the control condition selected option C on 57% of trials, while
participants in the frequency condition selected A on only 44% of trials.

We next examined whether the proportion of C choices within the
frequency condition was significantly different than 0.5. A one-sample
Bayesian t-test indicated no significant difference from 0.5, BF;p =
0.54, d = 0.169, although there was also no conclusive support for the
null hypothesis. The 95% credible interval included 0.5 within its upper
bound, 95% HCI = [0.383, 0.503]. Thus, although the difference be-
tween conditions was significant, there was not a significant frequency
effect observed in the frequency condition when the proportion of C
choices (0.44) is compared to chance (0.50).

We also compared the proportion of C choices on CA trials between
the frequency condition in Experiment 2 and the gains condition from
Experiment 1, where a significant frequency effect was observed, with
the proportion of C choices equaling 0.40. An independent sample
Bayesian t-test indicated support for the null hypothesis, BF;p = 0.22, d
= 0.126, which suggests that there is no difference in C choices between
the two conditions across experiments. Overall, these results suggest a
moderate frequency effect in Experiment 2 that was slightly attenuated
compared to the gains condition in Experiment 1.

Fig. 9 shows the distribution of C choices on CA test trials for each
group. On the left panel, for Control group participants, the modal value
is on the extreme right edge of the distribution, indicating a large group
of participants who selected option C on nearly every trial. On the left
panel, participants in the frequency condition showed a slight bias
overall for option A over C, with the modal group clustered toward the
left side of the plot, indicating almost zero C choices for this group of
participants. However, there is also a cluster of participants at the far
right of the plot for the frequency condition who selected option C on
nearly every trial. Overall, the pattern of C choices on CA trials reveals a
modest frequency effect.

3.2.1. Model fits

Table 4 shows the average BIC values, Bayes Factors, BIC-weights,
and VBMS statistics for each model. The Delta-Uncertainty, Decay-Win
and PVPE-Decay models provided the best fit in the Frequency
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Fig. 9. Distributions of the average proportion of C choices made on CA test trials, within each condition in Experiment 2. Left panel: Control condition, Right panel:
Frequency condition. Values to the left within each panel indicate more A choices, and values to the right indicate more C choices.

condition, all within less than 1 BIC unit in average fit. The BIC weights
suggests that about 38% of participants' data sets are best fit by the
Decay-Win model, with the Delta model fitting 25% of participants' data,
and the Delta-Uncertainty fitting 11%. The other models all had BIC
weights less than 0.10, indicating that less than 10% of data sets were
best fit by these models. This pattern is replicated in the VBMS results
and suggests that most participants used a strategy represented by the
Decay-Win or the Delta model. In the control condition, the Decay-Win
provided the best fit to the data, followed by the PVPE-Decay and the
Delta-Uncertainty models. The Decay-Win and Delta model again had
the highest BIC-weights, followed by the Delta-Uncertainty model.
Intriguingly, despite providing a poor fit on average, the Decay-Loss
model had a BIC weight of 0.11, which suggests that around 11% of
participants were using a relative loss minimization strategy in the
control condition.

Table 5 shows the best-fitting parameter values for each model. For
the best-fitting Decay-Win model, the average decay parameter value is

11

relatively low (~0.20), which suggests that participants weighed out-
comes from many recent trials when developing expectations about the
outcomes provided by each option. As in Experiment 1, for the PVPE-
Decay model the weight-to-relative losses parameter was less than 0.5,
indicating an average bias toward relative gain outcomes. The average
shape parameter values were also low, with many participants dis-
counting relative reward magnitudes, and focusing only on whether
rewards were relative wins or losses. One additional point to note is that
the Decay and PVL-Decay models had very low best-fitting parameter
values for the inverse temperature parameter in both conditions. This
suggests that the model was often best fit by assuming near random
responding in the task. As discussed above, as well as further below, the
Decay model makes unrealistic predictions when only losses are
provided.

3.2.2. Post-hoc simulations
We next conducted post-hoc simulations, identical to the procedures
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Table 4
Average best-fitting BIC values and BIC-weights in Experiment 2.
Mean BFBestModel, BIC- VB a VB VB ¢k
BIC M weight Tk
Frequency
Delta 294.18 79.84 0.25 37.24 0.29 0.04
Decay 353.78 >10K 0.06 8.37 0.06 <
0.001
Decay-Win 285.21 1.08 0.38 53.81 0.41 0.96
Decay-Loss 352.35 >10 K 0.03 2.50 0.02 <
0.001
PVL-Delta 298.53 716.95 0.03 1.01 0.01 <
0.001
PVL-Decay 358.91 >10K 0.01 1.02 0.01 <
0.001
PVPE-Decay 285.90 1.31 0.07 6.92 0.05 <
0.001
Delta- 285.04 - 0.16 19.14 0.15 <
Uncertainty 0.001
Control
Delta 297.45 229.29 0.23 33.99 0.26 0.03
Decay 351.31 >10 K 0.04 7.09 0.06 <
0.001
Decay-Win 286.45 - 0.33 51.14 0.39 0.97
Decay-Loss 347.97 >10K 0.11 12.78 0.10 <
0.001
PVL-Delta 301.20 1540.71 0.04 1.09 0.01 <
0.001
PVL-Decay 351.68 >10 K 0.05 2.58 0.02 <
0.001
PVPE-Decay 289.73 7.17 0.08 7.97 0.06 <
0.001
Delta- 293.64 36.41 0.13 13.36 0.10 <
Uncertainty 0.001

Note: Values in parentheses are standard deviations.

Table 5
Average best-fitting parameter and BIC values in Experiment 2.

Parameter aorA [4 y or Uncg A OF WL, O Wync
Frequency

Delta 0.31 (0.38) 0.90 (1.44)

Decay 0.87 (0.25) 0.01 (0.01)

Decay-Win 0.19 (0.29) 0.37 (0.41)

Decay-Loss 0.77 (0.33) 0.15 (0.24)

PVL-Delta 0.33 (0.37) 2.09 (2.17) 0.47 (0.47)

PVL-Decay 0.89 (0.24) 0.07 (0.17) 0.28 (0.45)

PVPE-Decay 0.17 (0.27) 0.37 (0.37) 0.28 (0.41) 0.25 (0.31)
Delta-Uncertainty 0.22 (0.32) 0.28 (0.34) 2.15(1.94) 143.81 (274.38)
Control

Delta 0.23 (0.31) 0.88 (1.35)

Decay 0.79 (0.31) 0.01 (0.02)

Decay-Win 0.20 (0.31) 0.41 (0.53)

Decay-Loss 0.65 (0.39) 0.21 (0.28)

PVL-Delta 0.25 (0.32) 1.69 (2.10) 0.50 (0.47)

PVL-Decay 0.80 (0.30) 0.07 (0.17) 0.28 (0.45)

PVPE-Decay 0.21 (0.28) 0.46 (0.54) 0.30 (0.40) 0.36 (0.40)
Delta-Uncertainty ~ 0.24 (0.32) 0.92 (0.85) 1.35 (1.69) 180.52 (354.64)

Note: Values in parentheses are standard deviations.

outlined in Experiment 1 above. Fig. 10 shows the predicted and
observed choices made on the critical CA test trials. Participants' data
are plotted in the top left of the plot, then the average simulated pro-
portion of C choices on each CA test trial is shown for each model. The
Decay-Win and PVPE-Decay models most clearly predict the pattern of
the data where participants in the control condition selected option C
much more than participants in the frequency condition, who preferred
option A. However, the Decay-Win model predicts a larger frequency
effect than was observed. The Delta and Delta-Uncertainty models pre-
dict smaller frequency effects than were observed, and the PVL-Delta
model reproduced a reversed frequency effect that was opposite to the
pattern of the data. The Decay, Decay-Loss, and the PVL-Decay models
all predict chance behavior because the models learn poorly under all-
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losses conditions.

The top section of Table 6 shows the RMSD between the simulated
and observed C choice on CA trials for each model. In the frequency
condition the PVPE-Decay model had the lowest RMSD. Interestingly,
the Decay-Win model had the second-highest RMSD because it predicted
much fewer C choices than observed. The PVPE-Decay model was likely
better able to reproduce the overall pattern of the data than the Decay-
Win model because it is more flexible, and can account for participants
who did not exclusively attend to relative gains, as assumed by the
Decay-Win model. In the control condition, the Delta-Uncertainty model
had the lowest RMSD, followed by the PVL-Delta, Delta, and PVPE-
Decay models.

We next examined post-hoc simulations across all trials. These are
plotted in Figs. S6 and S7, and Table 4 lists the RMSD values at the
bottom. In both conditions the Delta-Uncertainty model had the lowest
overall RMSD, followed by the Delta, Decay-Win and PVPE-Decay
models. The PVL-Delta model had a comparatively low RMSD in the
control, but not the frequency condition, and the Decay, PVL-Decay and
Decay-Loss models had the highest RMSD across all trials. Table S2 in-
dicates that the Delta-Uncertainty model had a much lower RMSD than
the other models for both training trial types, but it did not have the
lowest RMSD for any of the remaining test trials, with the Decay-Win
and PVPE-Decay models usually providing the best post-hoc recovery
of the test-trial data.

3.3. Discussion

Experiment 2 differed from Experiment 1 in that a cover story was
introduced which provided a context for the loss-minimization scenario
(buying dog food), and the reward structure was shifted to where all
outcomes were losses. The average losses for each option were between
—12.50 and — 17.50, compared to —0.25 and — 0.75 for Experiment 1.
These changes resulted in a significant frequency effect in Experiment 2.
Model-based analyses suggest that the PVPE-Decay model can best ac-
count for the frequency effect by assuming that participants interpreted
smaller losses as relative wins, or positive outcomes, and that more
frequent options were associated with more of these relative wins.

We believe that the context manipulation added in Experiment 2,
where participants viewed each trial as trying to minimize a shopping
expenditure was the key aspect of the manipulation that led to the fre-
quency effect in Experiment 2, because it made it more likely that par-
ticipants viewed smaller losses as relative gains. However, we also
changed the reward structure in Experiment 2 to where all outcomes
were losses. To examine whether the change in reward structure alone
can produce a frequency effect, we ran a modified version of Experiment
2, where the reward structure was the same, but the cover story about
shopping for dog food for a local shelter was removed. Instead, partic-
ipants were given the same instructions as Experiment 1 where they
were simply asked to try to minimize the number of points lost. We
predicted that the lack of a contextual cover story would lead to atten-
uated frequency effects because participants would be less able to
interpret smaller losses as relative gains.

4. Experiment 3
4.1. Method

4.1.1. Participants

Given time constraints for completing Experiment 3, we planned to
run approximately 100 participants in each condition. The computer
program randomly assigned each participant to a condition. Our final
sample size was 203 participants, 97 participants in the control condi-
tion and 106 participants in the frequency condition. Within the control
condition there were 70 females, 26 males, and one other; within the
frequency condition there were 78 females, 27 males, and one other.
Participants completed the experiment online for partial fulfilment of a
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Post-hoc Predicted C Choices on CA Training Trials

Participants Delta

Decay

DecayWin DecaylLoss

PVLDelta

Reward

Control
Frequency

Proportion C Choices

PVLDecay

PVPEDecay

DeltaUncertainty

Control Frequency Control

Frequency

Control Frequency

Frequency Condition

Fig. 10. Post-hoc simulated C choices on each CA test trial in Experiment 2, along with participants' data in the top left.

Table 6
RMSD Values From Post-hoc Simulations, Exp. 2.

Frequency Control
CA Trials
Delta 0.094 0.047
Decay 0.071 0.069
Decay-Win 0.114 0.048
Decay-Loss 0.077 0.063
PVL-Delta 0.263 0.042
PVL-Decay 0.072 0.070
PVPE-Decay 0.048 0.061
Delta-Uncertainty 0.056 0.041
All Trials
Delta 0.055 0.061
Decay 0.137 0.124
Decay-Win 0.065 0.072
Decay-Loss 0.132 0.111
PVL-Delta 0.159 0.070
PVL-Decay 0.137 0.125
PVPE-Decay 0.069 0.077
Delta-Uncertainty 0.046 0.048

course credit.

4.1.2. Materials and procedure

The materials and procedures were identical to Experiment 2, except
that the cover story about buying dog food for a local shelter was
removed, and participants were simply asked to pick which option they
thought would lead to the smallest losses. This task framing was iden-
tical to the losses condition in Experiment 1.

4.1.3. Data analysis
We used the same data analysis methods as reported in Experiment 1.

4.2. Results

Fig. 11a shows the proportion of optimal choices during the training
phase. A Bayesian mixed effects logistic regression model predicting
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optimal choices during training from condition, with random intercepts
for participants, indicated no effect of condition, b = —0.26, SE = 0.25,
95% HCI = [-0.77, 0.23], OR = 0.0.77. We also ran a similar model
predicting optimal choices from the interaction between condition and
trial type, with random intercepts for participants. There was no inter-
action effect, b = —0.02, SE = 0.07, 95% HCI = [-0.18, 0.12], OR =
0.98. Training accuracy was also much greater than chance overall at
78% for AB trials and 80% for CD trials.

We next examined the proportion of C choices on the critical CA
transfer trials, which are shown in Fig. 11b. A Bayesian mixed effects
logistic regression model with optimal choices predicted from condition
indicated no effect of condition, b = —0.54 SE = 0.56, 95% HCI =
[-1.63,0.56], OR = 0.58. A Bayesian t-test with average C choices as the
dependent variable indicated a null effect of condition, BF;9 = 0.25,d =
0.15. The Bayes Factor in support of the null hypothesis (BFy;) was 3.97,
indicating moderate support. Thus, there was no effect of reward
frequency.

We also conducted a one-sample t-test within the frequency condi-
tion with 0.5 as the test statistic. This suggested moderate support for the
null hypothesis that the proportion of C choices did not differ from 0.5,
BF19=10.20,d = 0.11. Fig. 12 shows the distribution of C choices on CA
test trials for each group. Slightly more participants preferred option A
in the frequency than the control condition, but the difference is very
small.

We also compared the data to Experiment 2, which differed only in
the framing of the task. A 2 (experiment) X 2 (frequency condition)
Bayesian ANOVA with the proportion of C choices on CA test trials as the
dependent variable indicated a null effect of the experiment X frequency
condition interaction, BFy; = 0.26, ng = 0.002, which suggests that the
pattern of the difference between the control and frequency conditions is
consistent across Experiments 2 and 3. The best supported model
included only the effect of frequency condition, BFy; = 0.2.94, r]f, =
0.015. A t-test comparing the Frequency condition data across Experi-
ments 2 and 3 indicates only anecdotal support for the hypothesis that
the two groups differed in their proportion of C choices, BF;p = 1.11, d
= 0.28, despite an 11% difference (44% C choices in Experiment 2
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Fig. 11. a.) Proportion of optimal choices during training for each trial type in Experiment 3. b.) Proportion of C choices on CA transfer trials. Error bars represent

standard errors of the mean.

Distribution of C Choices on CA Test Trials

Control Frequency
201 -
151 m
109
UM e 0D WL it [ﬂ]m

0.00 0.25 0.50 0.75

1.00

0.00 0.25 0.50 0.75 1.00

Proportion C Choices

Fig. 12. Distributions of the average proportion of C choices made on CA test trials, within each condition of Experiment 3. Left panel: Control condition, Right
panel: Frequency condition. Values to the left within each panel indicate more A choices, and values to the right indicate more C choices.

versus 55% in Experiment 3). However, a similar comparison between
the frequency condition from Experiment 3 and the gains condition from
Experiment 1, indicated significantly fewer C choices in Experiment 1
(M = 0.40) than in Experiment 3 (M = 0.55), BFjp = 9.04, d = 0.40. As
reported above, there was no difference in C choices between the fre-
quency condition from Experiment 2 and the gains condition from
Experiment 1. While the lack of an interaction between Experiments 2
and 3 suggests that the pattern of the effect of frequency did not differ
between the two experiments, there was no support for a frequency ef-
fect in Experiment 3 when tested against chance (0.5), and when
compared against the frequency effect found in the gains condition of
Experiment 1.

4.2.1. Model fits

Table 7 shows the average BIC values, Bayes Factors, BIC-weights,
and VBMS results for each model. The Delta-Uncertainty, and Decay-
Win models provided the best fit in the Frequency condition, within
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less than 1 BIC unit in average fit. The BIC weights suggests that about
28% of participants' data sets are best fit by the Delta-Uncertainty
model, with the Delta model fitting 24% of participants' data, the
Decay-Win model fitting 23% of participants' data, and the PVPE-Decay
16%. The other models all had BIC weights less than 0.10, indicating
that less than 10% of data sets were best fit by these models. In the
control condition, the Delta-Uncertainty model provided the best fit to
the data, followed by the Delta and Decay-Win model. The Delta, Delta-
Uncertainty, and Decay-Win models also received the most support ac-
cording to the VBMS statistics, such as the exceedance probability.
Table 8 shows the best-fitting parameter values for each model. For
the best-fitting Decay-Win model, the average decay parameter value is
relatively low (~0.15), which suggests that participants weighed out-
comes from many recent trials when developing expectations about the
outcomes provided by each option. As in the first two experiments, for
the PVPE-Decay model the weight-to-relative losses parameter was less
than 0.5, indicating an average bias toward relative gain outcomes. The
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Table 7
Average best-fitting BIC values and BIC-weights in Experiment 3.
Mean BFBestModel, BIC- VB a VB VB ¢k
BIC M weight Tk

Frequency

Delta 209.03 221.41 0.24 29.64 0.26 0.35

Decay 354.79 >10K 0.03 3.98 0.04 <
0.001

Decay-Win 199.02 1.48 0.23 26.57 0.23 0.16

Decay-Loss 324.56 >10 K 0.03 3.44 0.03 <
0.001

PVL-Delta 214.51 3428.92 0.01 1.04 0.01 <
0.001

PVL-Decay 360.18 >10K 0.00 1.04 0.01 <
0.001

PVPE-Decay 201.45 5.00 0.16 17.08 0.15 <
0.001

Delta- 198.23 - 0.28 31.20 0.27 0.49

Uncertainty

Control

Delta 206.77 3.24 0.31 34.86 0.33 0.55

Decay 356.18 >10 K 0.01 1.02 0.01 <
0.001

Decay-Win 211.29 31.03 0.31 33.74 0.32 0.44

Decay-Loss 315.28 >10K 0.07 6.30 0.06 <
0.001

PVL-Delta 211.54 35.16 0.02 1.05 0.01 <
0.001

PVL-Decay 361.59 >10 K 0.02 1.00 0.01 <
0.001

PVPE-Decay 216.74 473.43 0.16 4.62 0.04 <
0.001

Delta- 204.42 - 0.28 22.41 0.21 0.02

Uncertainty

Note: Values in parentheses are standard deviations.

Table 8
Average best-fitting parameter and BIC values in Experiment 3.

Parameter: aorA [4 y or Uncg A Or Wi, O Wync

Frequency

Delta 0.37 (0.39) 0.99 (1.06)

Decay 0.95 (0.19) 0.00 (0.01)

Decay-Win 0.15 (0.23) 0.53 (0.42)

Decay-Loss 0.63 (0.46)) 0.30 (0.64)

PVL-Delta 0.40 (0.39) 1.90 (1.90)  0.59 (0.48)

PVL-Decay 0.91 (0.26) 0.07 (0.50)  0.10 (0.29)

PVPE-Decay 0.17 (0.28) 0.66 (0.49)  0.20 (0.36) 0.26 (0.41)

Delta- 0.24 (0.33) 0.56 (0.59) 1.56 (1.79)  174.39 (306.87)
Uncertainty

Control

Delta 0.43 (0.38) 0.75 (0.89)

Decay 0.95 (0.17) 0.00 (0.00)

Decay-Win 0.16 (0.24) 0.50 (0.56)

Decay-Loss 0.50 (0.47) 0.31 (0.44)

PVL-Delta 0.50 (0.39) 2.13(2.03) 0.52(0.49)

PVL-Decay 0.97 (0.12) 0.00 (0.03)  0.05 (0.22)

PVPE-Decay 0.16 (0.24) 0.66 (0.65)  0.23 (0.39) 0.25 (0.39)

Delta- 0.23 (0.30) 0.50 (0.64) 2.08(1.97)  203.20 (309.41)
Uncertainty

Note: Values in parentheses are standard deviations.

average shape parameter values were also low (~0.20), with many
participants discounting relative reward magnitudes, and focusing only
on whether rewards were relative wins or losses. As in the first experi-
ments, the Decay and PVL-Decay models had very low best-fitting
parameter values for the inverse temperature parameter suggesting
that these models can, at best, predict random performance.

4.2.2. Post-hoc simulations

Fig. 13 shows the predicted and observed choices made on the crit-
ical CA test trials. The PVPE-Decay, Delta and Delta-Uncertainty models
most clearly predict the pattern of the data where participants in the
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control condition selected option C slightly more than participants in the
frequency condition. However, the Decay-Win model predicts a larger
frequency effect than was observed. The PVPE-Decay model predicted a
slightly larger frequency effect than was observed. As in Experiment 2,
the PVL-Delta model again reproduced a reversed frequency effect that
was opposite to the pattern of the data. The Decay, Decay-Loss, and the
PVL-Decay models all predict chance behavior because the models learn
poorly under all-losses conditions.

The top section of Table 9 shows the RMSD between the simulated
and observed C choice on CA trials for each model. In the frequency
condition the Delta-Uncertainty model had the lowest RMSD. As in
Experiment 2, the Decay-Win model had the second-highest RMSD
because it predicted much fewer C choices than observed. In the control
condition, the PVL-Delta model had the lowest RMSD, but all models
except the Decay and PVL-Decay models had similarly low RMSD values.
Overall, the pattern of the Delta-Uncertainty model appears to best ac-
count for the data in the frequency condition.

We next examined post-hoc simulations across all trials. The RMSD
values are shown at the bottom of Table 9, and the simulation results are
plotted in the Supplemental Materials. The basic Delta had the lowest
RMSD in both conditions for both training trial types (AB and CD). The
Decay-Win, PVPE-Decay, and the basic Delta model had the lowest
RMSD values for the remaining test trial types (CB, AD, and BD).

5. General discussion

The results of our experiments do not support the prediction of the
Decay model, of a reversed frequency effect under losses, and a standard
frequency effect under gains. We did not find a reversed frequency effect
in Experiments 1 or 3, and in Experiment 2 we found a moderate fre-
quency effect under losses, in the same direction as the gains condition
from Experiment 1. Although the Decay model correctly predicted a
frequency effect in the gains condition from Experiment 1, it provided
very poor fits and simulations for the losses conditions across all three
experiments. In a recent paper from our lab (Don et al., 2019), we found
that the Decay model provided the best account of the observed fre-
quency effect in a binary outcome task involving gains, but it appears
that the Decay model's predictions are qualitatively incorrect under loss-
minimization scenarios. Under losses, the Decay model predicts that as
an option is chosen more often, it will become worse in value because
the chosen option will become more negative, while the non-chosen
options will decay toward zero. This prediction runs counter to many
experiments that indicate that people have a strong tendency to
perseverate, or repeatedly pick the same option (Gershman, 2020;
Senftleben, Schoemann, Rudolf, & Scherbaum, 2021; Worthy, Pang, &
Byrne, 2013).

Our theoretical interpretation of the Decay model is that it assumes
that when participants make a decision on each trial, they think of all the
past outcomes associated with each option, in a recency-weighted
manner. Under gains, the model assumes participants recall the past
gains for each option, biasing choices toward more frequently presented
options, but under losses the model assumes that the losses for each
option will be recalled, and there will be more losses associated with the
more frequently presented alternative. These additionally recalled losses
will bias choices away from the more frequently encountered items,
creating the reversed frequency effect. In contrast, the Decay-Win and
PVPE-Decay models, which provided the best fits and post-hoc recovery
of the data, particularly for the critical CA test trials. These models as-
sume that reward outcomes are processed in a relative rather than an
absolute manner (Rakow et al., 2020). In tasks involving roughly equal
numbers of gains and losses, such as the lowa Gambling task (Bechara,
Damasio, Damasio, & Anderson, 1994), absolute and relative losses and
gains would tend to be the same.

Our data suggest that losses are not necessarily processed as aversive,
particularly when additional context is provided which helps partici-
pants view smaller losses as positive outcomes, as in Experiment 2. The
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Post-hoc Predicted C Choices on CA Training Trials
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Fig. 13. Post-hoc simulated C choices on each CA test trial in Experiment 3, along with participants' data in the top left.

Table 9
RMSD Values From Post-hoc Simulations, Exp. 3.

Frequency Control
CA Trials
Delta 0.044 0.034
Decay 0.049 0.108
Decay-Win 0.225 0.031
Decay-Loss 0.083 0.052
PVL-Delta 0.164 0.030
PVL-Decay 0.047 0.108
PVPE-Decay 0.079 0.040
Delta-Uncertainty 0.030 0.035
All Trials
Delta 0.065 0.059
Decay 0.250 0.290
Decay-Win 0.103 0.119
Decay-Loss 0.243 0.246
PVL-Delta 0.168 0.136
PVL-Decay 0.249 0.291
PVPE-Decay 0.101 0.119
Delta-Uncertainty 0.113 0.153

context-dependent PVPE-Decay and Decay-Win models best reproduced
the frequency effect observed under losses, which was similar to the
gains condition in Experiment 1. In Experiments 1 and 3, where the only
context given to participants was to minimize the number of points lost,
our data suggest that participants used strategies represented by the
either delta models such as the Delta and Delta-Uncertainty models, or
contextual decay models such as the Decay-Win and PVPE-Decay
models. The delta and contextual decay models may represent sepa-
rate value-based versus frequency-based decision-making strategies, or
modes that are modulated by the amount uncertainty associated with
each strategy (Hu et al., 2025). One speculative interpretation of our
findings is that in the abstract loss-minimization scenario it is more
difficult for participants to perceive which losses are better than others.
This may create uncertainty for the frequency-based strategy because it
is unclear what outcomes are relative wins, and this could shift some
participants toward a value-based strategy represented by delta models.
Alternatively, when given a decision-making context that helps to frame
smaller losses as wins or “bargains”, such as the shopping manipulation
in Experiment 2, this may enhance confidence in the frequency-based
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system and lead to stronger frequency effects.

The Decay-Win model, which predicted the overall pattern of the
data, and fit the majority of participants the best, makes three important
assumptions about how people make decisions. First, it assumes similar
behavior under gains and losses because it tracks the average reward
provided across all options, and updates its expected values relative to
that. This is similar to recent models that have demonstrated the
importance of taking the reward context into account (Brochard &
Daunizeau, 2024; Hayes & Wedell, 2023; Molinaro & Collins, 2023).
Second, it assumes that people only attend to the relative valence of the
reward (i.e. whether it was better than expected), and disregard the
magnitude. Third, the model assumes that people only focus on the
relative gains provided by each option, and they disregard the relative
losses.

These last two assumptions are much stronger than the first one, and
they should be further tested further in future work. However, these
assumptions are consistent with the results of studies using tasks like the
Iowa and Soochow gambling tasks (Bechara et al., 1994; Chiu et al.,
2008). A common finding in these studies is that people initially display
a strong preference for the options that give consistent, small gains, and
they disregard the rare losses provided by the frequently-rewarding
options (Aite et al., 2012; Byrne & Worthy, 2016; Don et al., 2022).
In a recent paper from our lab, we found that a model that was a com-
bination of the Decay-Win and Decay-Loss models, the Prediction-Error
Decay model, provided the best fit to both younger and older adult data
(Don et al., 2022). This model included the first two assumptions listed
above, but it incremented +1 for a ‘win’ and — 1 for a ‘loss.” Recent work
has challenged the idea that ‘losses loom larger than gains’ (Yechiam,
2019). For example, Hao and colleagues found that people learn better
from wins than from losses (Hao et al., 2023). Our results suggest that
relative gains, or positive outcomes, have greater weight in determining
future choices than relative losses.

We also found that the Delta-Uncertainty model provided a good fit
to the data, and good post-hoc recovery of the training data. However, it
did not perform well in reproducing the critical frequency effect
observed in Experiment 2. This model was formalized as an alternative
way in which frequency effects might manifest, compared to the
memory-based mechanisms assumed by the Decay model. Frequency
effects could be caused by aversion to uncertainty. One of the key
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differences between the Delta-Uncertainty and the Decay-Win models is
that the Delta-Uncertainty model assumes a preference for more
frequently encountered options simply because they have been selected
more often, whereas the Decay-Win model values more frequent options
because they have been rewarded more often. Although, this paper was
aimed at testing the predictions of the Decay model under losses, future
studies are likely needed with tasks that are better suited to address
whether frequency effects are due to memory for past rewards or for
familiarity due to more frequent selection. Future studies could also
examine whether mere exposure to some options, without any associated
outcomes, also produces frequency effects (Zajonc et al., 1974).

It is important to note that we used a model comparison approach
where eight different models that made non-overlapping predictions
about behavior in the task were compared. Four of these models were
considered basic models, each containing only two free-parameters, thus
they were not overly flexible (Roberts & Pashler, 2000). Although the
Decay-Win model provided the best fit to a large proportion of partici-
pants' data, a smaller group of participants' data were best fit by the
Delta model, which assumes optimal responding on the critical CA
transfer trials. An extended version of the Decay-Win model, the PVPE-
Decay model, is flexible enough to also account for optimal behavior on
the critical CA trials, similar to the Delta model. Depending on a given
researcher's goals the PVPE-Decay model may be more useful than the
Decay-Win model. If the goal is to describe participants' behavior, then
the PVPE-Decay model is likely more useful than the simpler Decay-Win
model, because its parameters can provide information about the degree
of discounting of the magnitude of rewards and the attention to relative
gains versus losses. Alternatively, if the researcher is attempting to test
competing theories, simpler, more falsifiable models like the Decay-Win,
Delta, and other models will be more useful, as the extended models we
used are much more flexible.

It is also worth noting that we obtained a frequency effect under
losses only in Experiment 2, where all outcomes were losses, and using a
scenario that participants were probably familiar with (purchasing items
and trying to minimize the cost). The frequency effect in Experiment 2
was also weaker than in the gains condition for Experiment 1, as the
proportion of C choices on critical transfer trials (0.44) was not signif-
icantly different from 0.5; however, there was a significant difference
compared to the control condition (0.57). We believe the comparison
with the control condition is most appropriate, since option C was
objectively more valuable than option A; however, the frequency effect
observed in Experiment 2 did not pass the stronger test of departing
significantly from chance behavior. We also reported comparisons
across Experiments that suggest that the pattern of the data was
consistent across Experiments 2 and 3, and a comparison of C choices in
the frequency conditions from Experiments 2 and 3 did not reach sig-
nificance. However, there was no difference in C choices between the
gains condition from Experiment 1 and the frequency condition for
Experiment 2, but there was a significant difference between Experi-
ments 1 and 3, with the gains condition from Experiment 1 yielding the
strongest frequency effect, and the frequency condition from Experi-
ment 3 yielding the weakest effect.

The familiarity with the situation of purchasing dog food in Experi-
ment 2 may have enhanced participants' ability to view smaller losses as
relative gains or ‘wins.” Losses may be viewed as more uniformly
negative outcomes in situations where the context of the reward
decision-making scenario is less clear. One limitation of the current set
of experiments is that we did not run Experiment 1's losses condition
with the dog food purchasing framing. Based on our interpretation of the
data, we would predict a similar frequency effect as that in Experiment
2, if the losses task was viewed as a shopping expenditure minimization
task. Future work can more broadly test how framing loss-minimization
scenarios in more interpretable ways enhances frequency effects and
other reward processing mechanisms. For example, does familiarly
framing a loss-minimization scenario improve memory for past
outcomes?
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It is also unclear exactly what information about past outcomes is
stored in memory on each trial. Do participants simply remember out-
comes as positive or negative experiences, or do they remember nu-
merical information about the rewards received and compare it to a
representation of the average reward at the time they are making
choices? The superior fits of the Decay-Win over the Decay-Loss model
also suggests that people focus more on positive outcomes than on
negative outcomes. An open question is whether this is due to enhanced
attention to positive outcomes, or better memory for positive outcomes.
The current experiments cannot address these issues, but they could
inspire clever experiments designed to address them in future work.

6. Conclusion

We tested the Decay model's prediction of a reversed frequency effect
under losses, compared to one previously reported for gains (Don et al.,
2019; Don & Worthy, 2022; Hu et al., 2025). The Decay model's pre-
dictions were supported only under a gains reward structure; the model
performed very poorly under losses. We found a frequency effect under
gains in Experiment 1, and under losses in Experiment 2. A Decay-Win
model, that tracked the number of relative gains provided the best
qualitive account of the observed data, and an extended model, the
PVPE-Decay model accounted for alternative strategies used in the task.
A basic Delta model, as well as the Delta-Uncertainty model provided
good fits and post-hoc recovery for most trials; however, these models
could not recover the frequency effects as well as the contextual decay
models. Theoretically, this suggests that frequency effects can occur
under gain-maximization and loss-minimization scenarios, that framing
loss-minimization scenarios in familiar ways can cause people to attend
more to the relative valence of each outcome, and attend less to reward
magnitude, and that behavior is driven more by relative gains than by
losses.

Data and Analysis Code Available at: https://osf.io/n43y5/?
view_only=6634bab4ba3741e890f9b7304aae9917
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