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The Rational Irrational:
Better Learners Show Stronger Reward Frequency Biases

Mianzhi Hu and Darrell A. Worthy
Department of Psychological and Brain Sciences, Texas A&M University

Frequency effects, defined as a bias toward more frequently rewarded but less valuable options, have
traditionally been viewed as maladaptive decision-making deficits. In the present study, we used a within-
subject design in which participants completed a four-option reinforcement learning task twice, once under a
baseline condition and once with a reward-frequency manipulation, to test whether better baseline learning
predicts greater or lesser susceptibility to frequency-based biases. Participants were first trained on two fixed
option pairs and then transferred their knowledge to novel pairings in a testing phase. Across conditions,
higher training accuracy generally predicted higher testing accuracy, with one critical exception: on trials
where a more valuable option was pitted against a more frequently rewarded but less valuable alternative,
participants with higher training accuracy exhibited a stronger bias toward the more frequent option.
Moreover, baseline optimal choice rates in these specific trials were unrelated to—and even slightly
negatively correlated with—optimal choice rates under the frequency condition. Computational modeling
further showed that participants with better baseline learning performance were better fit by frequency-
sensitive models in the frequency condition and they weighed frequency-based processing more heavily
than value-based processing. Overall, these findings suggest that frequency effects, rather than reflect flawed
learning, manifest more strongly in individuals with better baseline learning performance. This seemingly
irrational bias may, under conditions of uncertainty, represent a flexible, adaptive strategy that emerges
among the best learners when value-based approaches are costly or unreliable.
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Would you choose to dine at a decent local restaurant you know
well, or take a chance on a new one with a higher Yelp rating?
Would you stick with your usual route to work, or try a newly
discovered shortcut that might be faster? Would you keep using a
familiar app, or switch to an unfamiliar one that promises better
features? If you tend to choose the former option, you are dem-
onstrating what cognitive psychologists call a reward-frequency-
based bias, or frequency effect (Don & Worthy, 2022; Don et al.,
2019). Frequency effect refers to people’s tendency to favor options
that have yielded more frequent rewards, even if they offer lower
average long-term payoffs (Don & Worthy, 2022; Don et al., 2019;
Hu et al., 2025). This tendency can push people toward suboptimal
decisions, such as dining at worse restaurants, taking longer
commutes, or settling for less efficient tools. Yet under real-world

constraints, where value-based calculations can be overly costly or
practically impossible, sticking with familiar, reliably rewarding
options may, in fact, serve as an adaptive heuristic (Gigerenzer &
Gaissmaier, 2011). The present study seeks to examine whether
such frequency effects reflect flawed value learning or instead
represent a fundamental component of adaptive decision making,
thereby emerging more strongly in individuals with stronger
learning and value integration skills.

Frequency monitoring underlies many classic behavioral deci-
sion-making heuristics (Gigerenzer & Gaissmaier, 2011), such as
tallying (McCammon & Hägeli, 2007), fluency (Schooler &
Hertwig, 2005), and mere-exposure effects (Fang et al., 2007;
Zajonc et al., 1974). Frequency has been posited as one of the most
basic ways the human brain encodes statistical information
(Cosmides & Tooby, 1996; Gigerenzer, 1996; Obrecht et al., 2009).
In the context of reinforcement learning (RL), however, a bias
toward more frequently rewarded options despite their lower overall
value has been traditionally interpreted as a decision-making deficit,
particularly associated with severe psychiatric conditions (Ritter et
al., 2004; Shurman et al., 2005) or brain injuries (Bechara et al.,
1994, 1996). Supporting this view, frequency effects have been
found to be more pronounced in populations with reduced cognitive
functioning, including older adults (Don et al., 2022), individuals
with substance use disorders (Kim et al., 2011; Stout et al., 2004),
and those with developmental disorders (Sallum et al., 2013; Toplak
et al., 2005).

Yet more recent findings challenge this deficit-based interpretation
by showing that healthy participants without neuropsychological
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impairments would nevertheless show frequency effects and favor the
more frequently rewarded option over objectively more valuable
alternatives (Horstmann et al., 2012; Kumar et al., 2019; Lin et al.,
2007, 2013; Steingroever et al., 2013). Moreover, these effects do not
reliably distinguish between healthy and clinical populations (Kumar
et al., 2019; North & O’Carroll, 2001; Upton et al., 2012; Wilder et
al., 1998). Replications have been reported across several paradigms,
including the Iowa Gambling Task (IGT; Kumar et al., 2019; Lin et
al., 2013; Steingroever et al., 2013; Upton et al., 2012), a modified
version of IGT (Chiu & Lin, 2007; Lin et al., 2007), the Soochow
Gambling Task (Chiu et al., 2008; Lin et al., 2009; Upton et al.,
2012), and other four-option RL tasks (Don &Worthy, 2022; Don et
al., 2019; Hu et al., 2025).While there may be additional task-specific
factors contributing to preferences for more frequently rewarded
options in some of these paradigms (e.g., reward magnitude in the
IGT or Soochow Gambling Task), converging evidence generally
suggests that reward frequency may represent a fundamental com-
ponent of value learning rather than a pathological byproduct.
Why, then, do people show frequency effects? From the per-

spective of bounded rationality, humans make decisions under
constraints of time, information, and cognitive resources, which
often obscure the true structure of the environment (Gigerenzer &
Brighton, 2009; Gigerenzer & Gaissmaier, 2011). Under such
conditions, complex value-based computations may need to give
way to simpler heuristics to achieve an effort-accuracy balance. In
some cases, these heuristics can even lead to better decision out-
comes compared to strictly value-based strategies (Gigerenzer &
Brighton, 2009; Gigerenzer & Goldstein, 1996). Consistent with
this view, research has shown that these mental shortcuts are
especially favored when the decision-making environment is
complex (Hogarth & Karelaia, 2007; Kool et al., 2017; Payne et al.,
1988), time is limited (Rieskamp & Hoffrage, 2008; Wu et al.,
2022), or information is incomplete (Hertwig & Erev, 2009;
Yechiam & Busemeyer, 2005). Frequency effects may reflect one
such adaptive shortcut. Previous studies have found that frequency
effects emerge primarily when value differences between options
are small, whereas when value differences are large and clear,
reinforcement frequency exerts little influence on people’s choices
(Don & Worthy, 2022; Don et al., 2019). A recent study (Hu et al.,
2025) further demonstrates that preference for the more frequently
rewarded option increases proportionally with the level of envi-
ronmental uncertainty. When outcome variance (i.e., uncertainty)
was low, participants preferred the more valuable option; when
variance was moderate, no clear preference emerged; and when
variance was high, the frequently rewarded option was favored.
Together, these findings suggest that frequency effects may function
as an adaptive, supplementary strategy that becomes increasingly
dominant as value-based estimations grow more difficult.
Despite their adaptive appeal though, frequency-driven decisions

often lead to suboptimal performance in laboratory tasks and
potentially in real-world contexts (Brevers et al., 2013; Verdejo-
Garcia et al., 2006). What remains unclear is how an individual’s
baseline learning and decision-making capacity shapes suscepti-
bility to these effects in uncertain, complex environments. One
possibility is that better learners, while still influenced by reward
frequency, are more resilient to frequency-based biases and
therefore will rely more consistently on value-based strategies.
Another possibility is that, because switching to frequency-based

processing can itself be adaptive, better learners are more likely to
employ this strategy and thus exhibit stronger frequency effects.

To our knowledge, no study has systematically tested these
competing possibilities. The present work addresses this gap
using a within-subject design in which participants completed
the same RL task twice, with and without a reward frequency
manipulation. We aimed to examine whether individuals who
performed better during training and in the baseline condition
were more or less likely to shift toward frequency-based processing
when reward frequency was manipulated, leveraging RL compu-
tational modeling. Based on prior research (Hu et al., 2025), we
hypothesized that switching to frequency-based processing is
adaptive. Thus, we predicted that participants who demonstrated
stronger learning performance would be more likely to adopt
frequency-based strategies and exhibit stronger frequency effects
in the frequency condition.

Method

Task

This study was approved by the Texas A&M University insti-
tutional review board (STUDY2024-1012). The task was adapted
from the four-option RL paradigm used in Hu et al. (2025).
Participants were presented with four options (A, B, C, D); but on
each trial, they selected from a pair of only two options. The ex-
pected values (EVs) were ranked as C (0.75)>A (0.65)>B (0.35)>
D (0.25). The task consisted of two phases: a training phase and a
testing phase.

During the 120-trial training phase, participants repeatedly selected
from only two fixed option pairs: AB and CD. On each trial, they
compared and chose either between Options A and B or between
Options C and D, with the other two options being unavailable. After
each choice, they received feedback showing the number of virtual
points earned for that trial, alongwith a running total of their cumulative
points (Figure 1). Reward outcomeswere randomly drawn from normal
distributions centered on each option’s EV, with variance approxi-
mating binomial distributions. Table 1 shows the specific reward
structure. This level of reward variance has been shown to reliably
elicit frequency effects when reward frequency is manipulated
(Don et al., 2019; Hu et al., 2025). Within each training pair,
Option A (0.65) is designed to yield significantly higher rewards
than Option B (0.35), and Option C (0.75) is designed to yield
significantly higher rewards than Option D (0.25), making A and C
the dominant options in their respective pairs. However, the value
difference between A and C (i.e., only 0.1) is much smaller, which
would allow frequency effects to emerge.

After the training phase, participants proceeded to the testing
phase, where they must transfer their knowledge and select from the
remaining novel pairings (i.e., AD, BD, CA, CB) without feedback.
They were told that the options have remained the same, and they
need to make their best selections based on what they learned about
each option during the training phase. This phase had 80 trials in
total, with 20 trials for each pair type. The two training pairs, AB and
CD, did not appear during testing.

We employed a within-subject design that manipulated the fre-
quency of training pairs. Each participant completed the task twice
under two different conditions. In the baseline condition, partici-
pants chose between A and B on half of the training trials and
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between C and D on the other half (i.e., 60 AB and 60 CD trials). In
the frequency condition, however, AB trials appeared twice as often
as CD trials (i.e., 80 AB vs. 40 CD trials), making Amore frequently
rewarded than C despite its lower EV. We consider CA trials as
critical trials because our frequency manipulation creates a direct
conflict in the CA pairing, where the slightly less rewarding option,
A, is rewarded more frequently than the more rewarding option, C,
in the frequency condition. Prior studies have shown that this base-
rate manipulation encourages a preference shift from C to A,
demonstrating frequency effects (Don & Worthy, 2022; Don et al.,
2019; Hu et al., 2025).
Participants were instructed to maximize their cumulative points

by learning which options were most rewarding. Choice stimuli
were four fractal images randomly drawn from a pool of 12 fractal
images, with on-screen positions and image assignments random-
ized. To avoid any semantic or ordinal priming associated with
letters A, B, C, and D, the four options were randomly recoded using
arbitrary labels, A, K, L, and S. While Options A and B and Options
C and D always appeared together as pairs, their placement on the

screen randomly varied across participants (e.g., ABCD, CDAB,
BADC). Trial types were intermixed within each session, and the
order of both training and testing trials was randomly shuffled for
each participant.

Participants

A priori power analysis indicated that 449 participants would
provide 95% power to detect a weak-to-moderate effect size in
paired samples (dz = 0.2) at an α level of .01 (Faul et al., 2007).
Based on the previous studies in our lab, we anticipated that some
participants might show little evidence of learning during training,
respond inattentively, or be lost due to technical errors. To account
for this, we planned to recruit approximately 500 participants. In
total, 501 undergraduate students participated, all of whom provided
informed consent and received partial course credit for their par-
ticipation. Six participants were excluded for inattentive responding,
defined as consistently selecting the same option throughout the
entire training session for both training pairs (e.g., always choosing
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Figure 1
Example Trial Sequence

Note. During the first 120 training trials, participants selected from either the two left options
or the two right options (i.e., AB or CD). After each choice, they received feedback on the points
earned and saw their cumulative total at the top of the screen. In the 80 testing trials, they selected
from the remaining four novel pairings without any cumulative point displays or feedback. See
the online article for the color version of this figure.
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A in AB trials and C in CD trials). A final sample of 495 participants
went into data analysis.
The mean age was 18.93 years (SD= 1.01). The sample consisted

of 345 females, 148 males, one participant who self-identified as
“other,” and one who preferred not to answer. Racial distribution
was as follows: 370 White, 60 Asian, 31 multiracial, 12 Black or
African American, three American Indian or Alaska Native, one
Native Hawaiian or other Pacific Islander, and nine who preferred
not to answer. With respect to ethnicity, 135 participants identified
as Hispanic or Latino, nine preferred not to answer, and the
remainder identified as non-Hispanic.

Procedure

The experiment was administered online. Participants voluntarily
enrolled through the university Psychology Department’s research
participant pool and received partial course credit for their partic-
ipation. Upon enrollment, participants were directed to the study via
a secure link hosted on the university Just Another Tool for Online
Studies server, where the experiment would launch automatically.
The task was developed using the jsPsych JavaScript library

for creating online behavioral experiments. Participants completed
the RL task twice, once under each condition (i.e., baseline and
frequency). After completing the first task, they were directed to fill
out a demographic questionnaire and a series of additional surveys
included as part of a separate pilot project. They were then returned
to complete the second condition of the main task. The entire
experiment took approximately 1 hr to complete, with the two task
sessions taking roughly 45–50 min in total.
To minimize carryover effects, participants were explicitly

instructed that the reward structures were completely different
between the two sessions, despite the structural similarity of the
tasks, and that prior knowledge should not be transferred between
sessions. The order of conditions was randomized and counter-
balanced across participants: Two hundred fifty-two participants
completed the frequency condition first, and 243 completed
the baseline condition first. Order effects did not significantly
influence behavioral patterns (see Supplemental Table 1 and
Supplemental Figure 1). After completing both sessions, parti-
cipants were debriefed, thanked, and informed that they would
receive their course credit shortly. The study concluded upon
clicking the final submission button.

Data Analysis

Behavioral data were analyzed using mixed-effects models im-
plemented via the lme4 package in R. Random intercepts were
included at the participant level to account for individual differences
given our within-subject design. For analyses involving the per-
centage of optimal choices, we used the lmer function. For trial-level
logistic regression models predicting the probability of selecting the
optimal option on each trial, we used the glmer function.

Computational Models

Beyond traditional behavioral analyses, we employed compu-
tational modeling to further disentangle participants’ use and
weighting of distinct decision-making strategies.We focused on two
major classes of reinforcement learning rules: delta and decay rules.
For each class, we included a basic model and two widely used
extensions, yielding six individual models (2 × 3). To capture the
relative contribution of different strategies, we also constructed a
seventh hybrid model by combining the best-fitting variant from
each class, resulting in a total of seven formal models.

Delta Model

The basic delta-rule model (Sutton & Barto, 1998) is one of the
most widely used value-based RL models. It updates the EV by
incorporating the prediction error between the EV from the last trial
and the actual reward received in the current trial. EVt+1 for option j
is defined as:

EVj, t+ 1 = EVj, t + α · ðrt − EVj, tÞ · Ij, (1)

where Ij is an indicator term set to 1 if option j is chosen on trial t, and
0 otherwise; rt is the reward value; and α is the recency learning
parameter, α ∈ ð0, 1Þ, with higher α indicating greater weighting
of most recent outcomes. When α = 0, EVs remain unchanged
regardless of new outcomes; when α = 1, EVj is equivalent to the
reward received for option j on its most recent selection. In this
model, no memory of previous trial instances is retained, making it
mean-centered. Consequently, when prediction errors are minimal,
the EV does not substantially change with repeated rewards, ren-
dering the model insensitive to reward frequency.

Delta-Prospect-Valence-Learning

The delta-prospect-valence-learning model (W. Y. Ahn et al.,
2008) extends the basic delta model by no longer assuming linearity,
proportionality, and gain-loss symmetry in the subjective represen-
tation of EV, as proposed by the prospect theory (Tversky &
Kahneman, 1992). Specifically, this model does not assume veridical
processing of EV. Instead, it posits that the magnitude of rewards can
be transformed by a nonlinear shape parameter γ and that individuals
may apply different weights to gains versus losses via a gain–loss
weighting parameter λ. The subjective utility is defined as:

ut =
�

rγt if rt ≥ 0

−λjrtjγ if rt < 0
, (2)

where the shape parameter γ (0 < γ < 1) determines the curvature
of the utility function. When γ = 1, all rewards are processed
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Table 1
Reward Structure

Condition Reward structure

Option

A B C D

Baseline N(M, SD) .65(.48) .35(.48) .75(.43) .25(.43)
Base-rate 1 1

Frequency N(M, SD) .65(.48) .35(.48) .75(.43) .25(.43)
Base-rate 2 1

Note. N(M, SD) indicates continuous normal distributions of rewards for each
option, where M is the mean and SD is the standard deviation. “Base-rate”
indicates how frequently each choice pair is presented during training, relative
to the other choice pair. For example, 2:1 means the first pair (i.e., AB) is
presented twice as often as the second pair (i.e., CD). The standard deviations
approximated binomial variance, calculated as SD = ðEV1 × EV2Þ0.5.
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veridically. As γ approaches 0, reward magnitudes are increasingly
discounted, and at γ = 0, all rewards are treated equivalently (i.e.,
coded as 1) and the magnitude is completely disregarded. The loss-
aversion parameter λ (0 < λ < 5) determines the relative weighting
of gains and losses. When λ= 1, gains and losses contribute equally;
λ values below 1 indicate greater sensitivity to gains than losses,
whereas λ above 1 indicate greater sensitivity to losses than gains.
The computed utility is then entered into the delta learning rule to

update the EV of the chosen option.

EVj, t+ 1 = EVj, t + α · ðut − EVj, tÞ · Ij: (3)

As in Eq. 1, Ij denotes an indicator for the chosen option and α
represents the recency learning parameter.

Delta-Asymmetric

Because all option EVs in our task were positive and outcomes
below 0 were rare, we included an additional delta extension model
that applies a relative rather than absolute weighting rule for gains
and losses. The delta-asymmetric model (Niv et al., 2012) assigns
separate learning rates to positive and negative prediction errors,
defining gains and losses based on whether the received reward
exceeds or falls short of the EV for the chosen option. The EVs are
then updated using the standard delta rule:

EVj, t+ 1 =
�
EVj, t + α+ · δðrtÞ · Ij if δðrtÞ > 0,

EVj, t + α− · δðrtÞ · Ij if δðrtÞ < 0,
(4)

whereδðrtÞ represents the prediction error, δðrtÞ = rt − EVj, t; α
+

and α− denote the learning rate for positive and negative prediction
errors, respectively, α ∈ ð0, 1Þ. This model has been shown to
effectively account for risk sensitivity in decision making (Niv
et al., 2012).

Decay

The second major class of reinforcement learning rules is the
decay rule (Erev & Roth, 1998). In contrast to the delta rule, which
represents a recency-weighted average of reward value or subjective
utility, the decay rule assumes that an option’s EV increases through
repeated selection but gradually decays when the option is not
chosen. Formally, the decay rule updates the EV of option j as:

EVj, t+ 1 = EVj, t · ð1 − AÞ + rt · Ij, (5)

where A is the decay parameter akin to α in the delta-rule models,
A ∈ ð0, 1Þ. Higher A indicates greater weight assigned to recent
outcomes. In this model, the EV for each option gradually decays
over time and increases only when a reward for that option is
received. As a result, options rewarded more frequently accumulate
higher EVs. This mechanism has been shown to capture frequency
effects, particularly under conditions where reward frequency
may alter participants’ perception of EV (Don &Worthy, 2022; Don
et al., 2019; Hu et al., 2025).

Decay-Prospect-Valence-Learning

The decay-prospect-valence-learning model (W.-Y. Ahn et al.,
2014) parallels the delta-prospect-valence-learning model. The

conversion from actual rewards to subjective utility follows the
same functional form as in Eq. 2, but the resulting utility is then
integrated using the decay rule, as follows:

EVj, t+ 1 = EVj, t · ð1 − AÞ + ut · Ij: (6)

Decay-Win

We also fit a relative learning model within the decay class,
adapted from the prediction-error decay model (Don et al., 2022). In
this decay-win model, EV accumulation depends solely on how
often an option yields above-average outcomes. Here, rewards are
defined relative to whether the obtained outcome exceeds the
running average, AV, updated as:

AVt+ 1 = AVt + α · ðrt − AVtÞ, (7)

and the EV is calculated as:

EVj, t+ 1 = EVj, t · ð1 − αÞ + 1 · Ij, (8)

where Ij an indicator term set to 1 if rt > AVt and 0 otherwise. In this
model, only the valence of the outcome (i.e., whether it is a “win” or
not) is used to guide people’s choices. EVs decay over time, and
increments occur only when rewards surpass the overall average.
The model ignores exact reward magnitudes and instead tracks
only the number of above-average outcomes associated with each
option, thereby providing a clean dissociation between frequency-
based and value-based processing.

Hybrid Model

Finally, we selected the best-fitting models from each class
to form a hybrid model, consisting of the two relative models: delta-
asymmetric and decay-win (see Results). The inclusion of the decay-
win model as the representative of the decay rule class completely
dissociates value-based processing from frequency-based proces-
sing: the delta component (i.e., delta-asymmetric) retains nomemory
of reward frequency, while the decay component (i.e., decay-win)
retains no memory of actual reward values. This hybrid configu-
ration also provided the best model fit among all tested combinations
of hybrid models (see Supplemental Table 2).

All simple models used a SoftMax rule to convert EVs into
each model’s predicted probability of selecting each j alternative
on trial t:

PjCj, tj =
eβ·EVj, tPNj
1 eβ·EVj, t

, (9)

where β = 3c − 1ð0 ≤ c ≤ 5Þ, and c is a log inverse temperature
parameter that determines how consistently the option with a
higher EV is selected (Yechiam & Ert, 2007). When c = 0, choices
are random; as c increases, the option with the highest EV is
selected more often. For the hybrid model, a free weighting
parameter, w, was applied to the choice probabilities generated by
each component process and the final predicted probability is
calculated as:
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PjCjðtÞj = wDelta ·
eβ·EVDelta, jðtÞPNðjÞ
1 eβ·EVDelta, jðtÞ

+ ð1 − wDeltaÞ ·
eβ·EVDecay, jðtÞPNðjÞ
1 eβ·EVDecay, jðtÞ

: (10)

Model Fitting and Evaluation

We used the maximum likelihood (ML) approach for model
fitting. The negative log likelihood of the parameter set θ, given
observed data y and model M, Lðθ̂jy,MÞ, was minimized using the
minimize function in the SciPy library in Python. To avoid local
minima, optimization was repeated 100 times with randomly
selected starting points for each parameter. All trials except the first
trial in each condition were included for model fitting, and the
outcome or utility of the first trial in each condition was used to
initialize EV values.
Model comparison relied on the Bayesian information criterion

(BIC; Schwarz, 1978). For each participant in each condition, we
computed:

BIC = −2 ln Lðθ̂jy,MÞ + K lnðNÞ, (11)

where N is the number of observations. In our study, N equals 200
trials in each condition. To evaluate model evidence, we calculated
BIC weights (Wagenmakers & Farrell, 2004):

wiðBICÞ =
exp −

1
2
ΔiðBICÞ

P
K
k=1 exp −

1
2
ΔkðBICÞ

, (12)

where ΔiðBICÞ = BICi −minðBICÞ. Lower BIC values indicate
better model fit, whereas higher BIC weights reflect stronger
relative support for a given model. We also calculated the Bayes
factor (BF10) using:

BF10,Model1 = exp

�
BICModel2 − BICModel1

2

�
, (13)

with BF10 > 3 generally considered significant, representing a
moderate advantage in favor of Model 1 (Wagenmakers, 2007).
In addition, we conducted group-level model comparisons using

variational Bayesian model selection (VBMS; Stephan et al.,
2009). VBMS treats each model as a random variable and estimates
the parameters of a Dirichlet distribution, which are then used to
construct a multinomial distribution describing the probability
that each model generated the data of a randomly chosen partic-
ipant. Posterior Dirichlet parameters, α, represent the estimated
frequency with which each model best explains individual parti-
cipants’ data. The posterior multinomial parameter, rk, gives the
probability that data from a randomly chosen participants were
generated by mode k. Finally, the exceedance probability, φk,
quantifies the likelihood that a particular model k is more likely
than all competing models to generate group-level data. We used
BIC to approximate the log evidence and all three metrics were
calculated for model comparisons.

Transparency and Openness

All data have been made publicly available at the Open
Science Framework and can be accessed at https://osf.io/zsk4e
(Hu & Worthy, 2025). Materials, analysis code and the code
behind model fitting have also been made publicly available at
https://osf.io/zsk4e/. This study’s design and its analysis were not
preregistered. Additional analyses are reported in the Supplemental
Materials.

Results

Overall Behavioral Results

We first examined participants’ performance during the
training phase using a mixed-effects logistic regression model,
predicting trial-wise choices from condition, trial type, and block.
This analysis revealed a main effect of trial type (β = 0.145 ±
0.039, t = 3.680, p < .001), with participants demonstrating
higher accuracy on CD trials than AB trials, and a main effect of
block (β = 0.039 ± 0.007, t = 5.423, p < .001), with a greater
proportion of optimal choices observed over time. There was no
main effect of condition (β = 0.056 ± 0.037, t = 1.516, p = .130),
suggesting comparable learning effects across conditions.
Training performance in AB and CD trials was significantly
correlated (β = 0.255 ± 0.044, t = 5.814, p < .001), indicating
generally consistent learning performance across the two trained
pairs (Supplemental Figure 2).

The only significant interaction was between trial type and
condition (β = −0.161 ± 0.057, t = −2.807, p = .005). As shown in
Figure 2A, the performance gap between AB and CD trials was
significantly reduced in the frequency condition. This may reflect
either poorer learning due to reduced exposure to CD trials or
increased exploratory behavior, as participants may perceive CD
trials as scarce opportunities worth exploring. All other interactions,
including Trial Type × Block (β = 0.008 ± 0.010, t = 0.762, p =
.446), Condition × Block (β = −0.003 ± 0.009, t = −0.281, p =
.779), and the three-way interaction (β = 0.009 ± 0.015, t = 0.606,
p = .544), were insignificant.

To assess overall performance, we examined the percentage of
optimal choices across all six trial types in each condition (Figure 2B).
For each trial type, we conducted a one-sample t test to compare the
observed choice rate against random chance level (0.5) and adjusted
for multiple comparisons using the Benjamini–Hochberg procedure
(Benjamini & Hochberg, 1995). After correction, participants
selected the optimal option at rates significantly above chance across
nearly all trial types across both conditions (see Supplemental
Table 3), with only two exceptions. In the BD trials under the
baseline condition, the proportion of optimal choices (M = 0.526)
was only numerically above chance, t(494)= 1.729, padjusted = .084,
and in the CA trials under the frequency condition, participants
significantly favored the suboptimal Option A over the optimal
Option C (see details below).

Critical CA Trials

As predicted, in the critical CA trials, participants significantly
favored the optimal Option C in the baseline condition, t(494) =
2.824, padjusted = .005, but showed a reversed preference for
the more frequently rewarded yet less valuable Option A in the
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frequency condition, t(494) = −5.903, padjusted < .001. This
between-condition shift in choice preference was statistically
significant based on a paired-sample t test, t(494) = 6.007, p <
.001. To further evaluate this effect, we compared participants’ C
choice rates against the underlying reward ratio between Options C
and A, calculated as .75

.75+ .65 ≈ .536. We found that participants’
preference for C (M = .541, SD = .329) closely matched this
expected reward ratio in the baseline condition, t(494) = 0.406, p =
.685, whereas in the frequency condition, C choice rates (M= .415,
SD = .320) fell significantly below this ratio, t(494) = −8.388, p <
.001, indicating a robust reward-frequency effect. These results
aligned with many prior studies using the same paradigm (Don &
Worthy, 2022; Don et al., 2019; Hu et al., 2025), which have
consistently demonstrated that, under unequal frequencies of
reinforcement, people tend to prefer the more frequently rewarded
option even when it yields suboptimal outcomes.
Figure 2D shows the distribution of C choice rates across con-

ditions (see Supplemental Figure 3 for distributions of all trial
types). A larger proportion of participants in the frequency condition
chose C less often than both random chance and the reward ratio,
further confirming the frequency effect.

Within-Subject Results

At the core of the present study lies a key question—whether the
seemingly irrational, heuristic-driven frequency effect is more
pronounced among better learners and decision makers. We defined
“better learners” from two complementary angles: (a) participants
who achieved higher overall training accuracy across AB and CD
trials and (b) participants who showed higher C choice rates on CA
trials in the baseline condition, indicative of better value-based
judgment when reward frequency was not manipulated. As we will
show below, these two definitions do not produce divergent results.
Importantly, we note that “better learners” here is defined relative to
other participants within our sample and does not necessarily imply
being a “good learner” in an absolute sense. Using these definitions,
we addressed our central question as follows. First, we examined
whether participants with higher training accuracy were more likely
to select Option A in CA trials under the frequency condition.
Second, we tested whether participants who demonstrated better
value-based learning performance (i.e., higher C choice rates) in the
baseline condition were more likely to choose A in CA trials under
the frequency condition.
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Figure 2
Behavioral Results

Note. Panel A: Participants generally showed improved performance across blocks. Overall training accuracy did not differ significantly
between conditions, but the typical advantage in CD trials over AB trials observed in the baseline condition disappeared in the frequency
condition. Panel B: Participants selected the optimal option at rates significantly above chance across most trial types, with only two exceptions:
BD trials in the baseline condition where the optimal choice rates were not significantly different from chance, and CA trials in the frequency
condition, where participants significantly favored the more frequently rewarded, yet suboptimal Option A. Panel C: A closer look at CA trials
revealed that in the baseline condition, C choice rates closely matched the objective reward ratio, whereas in the frequency condition they fell
significantly below both the reward ratio and chance level. Panel D: The distribution of C choice rates further confirmed this effect and showed
that a larger proportion of participants in the frequency condition chose C less often than either the reward ratio or chance level. Error bars
indicate 95% CI interval. CI = confidential interval. See the online article for the color version of this figure.
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Figure 3
Within-Subject Results

Note. Panel A: For CB and AD testing trials, higher training accuracy was consistently associated with higher optimal
choice rates in the testing phase. This association was insignificant for BD trials in both conditions. In contrast, CA trials
revealed a significant interaction, where training accuracy was positively (insignificant) related to C choice rates in the
baseline condition but negatively related in the frequency condition. This suggests that although better training
performance generally promoted optimal test-phase choices, it led participants to show stronger frequency effects when
reward frequency was manipulated. Panel B: As we further decouple the unique contributions of AB and CD learning,
AB accuracy was consistently associated with greater A choice rates and CD accuracy was consistently associated with
greater C choice rates in CA trials. Interaction effects further revealed a steeper AB–CA slope and a flatter CD–CA slope
in the frequency condition. This stronger A influence and weaker C influence, coupled with the base-rate imbalance
between AB and CD trials in the frequency condition, explains why high-performing participants were numerically more
likely to choose C in the baseline condition, but more likely to choose A in the frequency condition (also see
Supplemental Figure 5 for model-based predictions controlling for individual-level variance). Panel C: Across AB, CD,
CB, and AD trials, optimal choice rates were positively correlated between the two conditions, indicating consistent
decision-making patterns. For CA trials, however, this association was nonsignificant and numerically negative. Error
bars indicate 95% CI interval. CI = confidential interval. See the online article for the color version of this figure.
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To address the first question, we ran a series of mixed-effects
models predicting the percentage of optimal choices during the
testing phase from participants’ combined training accuracy on AB
and CD trials, condition, and their interaction. Within the four
testing trial types, higher training accuracy was consistently linked
with higher optimal choice rates in AD (β = 0.507 ± 0.072, t =
7.066, p < .001) and CB trials (β = 0.739 ± 0.072, t = 10.287, p <
.001) and showed no significant relationship in BD trials (β =
−0.153 ± 0.081, t = −1.879, p = .061) regardless of condition.
However, in CA trials, we found no main effect of training accuracy
(β = 0.106 ± 0.078, t = 1.354, p = .176) but a significant interaction
effect (β = −0.321 ± 0.114, t = −2.828, p = .005). In the baseline
condition, training accuracy was unrelated—though slightly posi-
tively associated—with C choice rates (β= 0.106 ± 0.079, t= 1.333,
p = .183), whereas in the frequency condition, the association
reversed, with higher training accuracy significantly predicting
fewer optimal C choices (β=−0.216 ± 0.081, t=−2.655, p= .008).
This reversal was unique to CA trials, as no other trial type showed
a change in direction of the training accuracy–optimal choice
relationship across conditions (AD: β = 0.017 ± 0.104, t = 0.162,
p = .872; CB: β = −0.167 ± 0.105, t = −1.595, p = .111; BD: β =
0.080 ± 0.118, t = 0.677, p = .499; Figure 3A). Therefore, we
confirmed that while higher training accuracy generally predicted
better testing performance, participants with stronger training
performance were more likely to choose Option A in the frequency
condition.
To further disentangle the source of the observed interaction

effect, we examined the individual effects of AB and CD training
performance on CA trials. We ran two trial-wise logistic regressions
predicting accuracy in CA trials by training accuracy in AB or
CD trials and condition (see Supplemental Figure 4 for other trial
types). As shown in Figure 3B, for AB, higher training accuracy
consistently predicted lower optimal choice rates in CA trials (β =
−1.073 ± 0.135, t = −7.959, p < .001), indicating that participants
who learned AB well (i.e., and therefore chose A frequently) were
more biased toward A later. This effect was notably stronger in the
frequency condition (β=−0.977 ± 0.190, t=−5.137, p< .001). For
CD, the pattern was reversed. Higher training accuracy in CD trials
predicted higher optimal choice rates in CA trials (i.e., favoring C;
β = 1.647 ± 0.133, t = 12.413, p < .001), but this effect was
attenuated in the frequency condition (β = −1.203 ± 0.185, t =
−6.512, p < .001; also see Supplemental Figure 5).
Therefore, we decomposed the contributions of the two training

pairs to CA performance as follows. First, reward frequency con-
sistently influences testing choices. Better performance on AB trials
(i.e., selecting A more often) increases A preference in CA trials,
whereas better performance on CD trials (i.e., selecting C more
often) increases C preference in CA trials. Critically, however,
because AB trials occurred twice as often as CD trials in the fre-
quency condition, participants with overall better learning perfor-
mance necessarily experienced and reinforced A more often than C.
Even without an interaction, this asymmetry alone would bias
participants toward choosing Amore and produce frequency effects.
Second, the significant interaction effects amplify this asymmetry,
as participants with higher AB accuracy showed an even steeper A
preference in the frequency condition relative to baseline, whereas
the positive influence of CD accuracy on C selection was noticeably
attenuated. Together, the stronger A and weaker C effects explain

why the frequency manipulation disproportionately increases fre-
quency effects among participants with higher training performance.

Next, we ran a series of mixed-effects logistic regression models
predicting the probability of selecting the optimal option in the
frequency condition as a function of the corresponding proportion of
optimal choices in the baseline condition, both overall and sepa-
rately for trial type. Overall, participants’ baseline performance
significantly predicted their performance in the frequency condition
after controlling for trial types (β= 0.061 ± 0.029, t= 2.111, p= .035),
suggesting behavioral consistency across conditions. For specific trial
types, this positive association held for AB (β = 0.572 ± 0.258, t =
2.213, p= .027), CD (β= 0.606 ± 0.245, t= 2.477, p= .013), AD (β=
0.774 ± 0.342, t= 2.263, p= .024), CB (β = 0.777 ± 0.329, t= 2.357,
p = .018) trials, but not for CA (β = −0.412 ± 0.313, t = −1.315, p =
.188) or BD trials (β = −0.155 ± 0.344, t = −0.449, p = .653)—both
of which involved closely valued options with different reward fre-
quencies during training. Critically, the slope for CA trials was sig-
nificantly different—and notably negative—compared to AB (β =
−0.747 ± 0.091, t = −8.175, p < .001), CD (β = −0.582 ± 0.098, t =
−5.945, p < .001), CB (β = −0.532 ± 0.096, t = −5.542, p < .001),
BD (β=−0.325 ± 0.096, t=−3.372, p< .001), andAD (β=−0.742 ±
0.103, t=−7.238, p< .001) trials (Figure 3C). These findings suggest
that while participants’ selection of optimal choices was overall
consistent across conditions, their choice of C in CA trials was
uncorrelated, if not negatively correlated, between baseline and fre-
quency conditions. In other words, participants who strongly preferred
the optimal Option C under baseline conditions did not maintain that
preference when Option A was more frequently rewarded, suggesting
a strategic shift away from value-based decision making under fre-
quency manipulation.

Model Fitting Results

Finally, we applied computational modeling to quantify the rel-
ative contributions of reward-frequency based and value-based
strategies in each condition. As shown in Table 2, the decay-win and
hybrid models consistently provided the best fits across participants.
The hybrid model yielded the best average fit as indexed by BIC,
while the decay-win model accounted for the largest number of
individual best fits. The overall advantage of decay-classmodels over
delta-class models suggests that participants relied on reward fre-
quency during learning in both conditions. In particular, the superior
performance of the decay-win model, even relative to alternative
models within the decay-class which encode precise numerical
reward values (e.g., decay-prospect-valence-learning), indicates that
participants may have relied strongly on binary, reward/nonreward
tallies when internally updating EV. As option A receives more
“wins,” or above-average outcomes, in the frequency condition, this
dichotomous processing likely reflects a fundamental mechanism
through which reward-frequency biases arise at the population level.
Previous modeling work similarly demonstrates that incorporating
binary outcome processing improves model fit and captures reward-
frequency-related biases in choice behavior (Hu et al., 2025).

Parameter Analysis

To further examine within-subject changes in strategy use and
identify individuals who exhibit stronger frequency effects, we
analyzed whether participants’ baseline behavior could predict
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reliance on frequency-based strategies in the frequency condition.
We first focused on simpler, single-process models. A mixed-effects
model was conducted to predict model fit (i.e., BIC) of the three
decay rule models in the frequency condition with participants’ C
choice rates in the baseline condition. We controlled for model type
to reduce model-specific noise. Results revealed that higher C
choice rates in the baseline condition significantly predicted better fit
of decay rule models in the frequency condition (β = −17.699 ±
6.939, t = −2.551, p = .011), suggesting that individuals who
learned value-based contingencies well in baseline condition
were more likely to be better captured by frequency-sensitive
decay rule models when reward frequency was manipulated
(Figure 4A). Crucially, this relationship did not hold for fre-
quency-insensitive delta-rule models (β = −9.632 ± 6.353, t =
−1.516, p = .130), whose fit was unrelated to participants’
baseline C choice rates. We found no evidence for the usage of
alternative heuristic processes beyond reward-frequency-based
biases across our comparison models (Supplemental Figure 6).
Next, we examined the hybrid model to assess whether parti-

cipants who selected Option C more frequently in the baseline
condition were more likely to shift toward a frequency-based
strategy under frequency manipulation. Specifically, we ran a
general linear model predicting the model-inferred delta weights
(i.e., the relative reliance on value-based learning) in the frequency
condition based on participants’ C choice rates in the baseline
condition, controlling for training performance. The results revealed

a significant negative correlation: participants who chose C more
often in the baseline condition showed lower delta weights in the
frequency condition (β = −0.103 ± 0.052, t = −1.977, p = .049),
indicating greater reliance on the frequency-based process
(Figure 4B). Importantly, this pattern was consistent across
alternative, less well-fitting hybrid configurations where different
delta and decay variants were combined (Supplemental Figure 7).
Together, these findings suggest that individuals who previously
engaged in more rational, value-based learning were particularly
susceptible to switching to a heuristic, frequency-driven strategy
when reward frequencies were unequal and demonstrating stronger
frequency effects.

Finally, we looked into the best-fitting model parameters.
Parameter estimates were strongly correlated across conditions (β =
0.158 ± 0.010, t = 15.935, p < .001) after controlling for parameter
type and model type, indicating high consistency in general deci-
sion-making characteristics across conditions. However, mixed-
effects models predicting the percentage of C choices in CA trials
based on condition and specific parameters revealed significant
interactions across all parameters (c: β = −0.031 ± 0.004, t =
−7.451, p < .001; α: β = 0.099 ± 0.018, t = 5.560, p < .001; α-neg:
β = 0.075 ± 0.035, t = 2.128, p = .034; γ: β = −0.136 ± 0.031, t =
−4.432, p < .001; λ: β = 0.030 ± 0.006, t = 5.230, p < .001; w: β =
0.170 ± 0.054, t = 3.164, p = .002). Specifically, parameters
associated with higher C choice rates in the baseline condition were
associated with lower C choice rates in the frequency condition, and
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Table 2
Model Fitting Results

Condition/model name c α/A/α-pos α-neg γ λ w BICavg BICweight BF10 Nbest fit VBMS α VBMS rk VBMS φk

Baseline
Delta 1.708 .287 252.002 <.001 5316.431 94 54.748 0.109 <.001
Delta-PVL 1.769 .302 0.548 1.862 256.015 <.001 39527.978 12 4.597 0.009 <.001
Delta asymmetric 1.686 .352 .261 242.478 .018 45.449 43 35.244 0.070 <.001
Decay 0.356 .211 240.180 .056 14.404 50 44.905 0.089 <.001
Decay-PVL 0.345 .193 0.357 2.118 242.420 .018 44.154 30 17.254 0.034 <.001
Decay-Win 0.423 .201 239.151 .094 8.611 136 183.276 0.365 .874
Hybrid 1.698 .237 .365 0.528 234.845 .813 130 161.976 0.323 .126

Frequency
Delta 1.766 .299 253.251 <.001 5220.613 98 69.907 0.139 <.001
Delta-PVL 1.808 .332 0.562 2.001 256.807 <.001 30897.749 20 13.673 0.027 <.001
Delta asymmetric 1.796 .382 .240 245.337 .008 99.864 34 18.770 0.037 <.001
Decay 0.379 .225 241.835 .048 17.336 75 56.601 0.113 <.001
Decay-PVL 0.374 .221 0.340 2.084 244.168 .015 55.648 21 16.873 0.034 <.001
Decay-Win 0.416 .195 240.334 .101 8.185 129 189.481 0.377 .998
Hybrid 1.664 .274 .381 0.517 236.130 .828 118 136.695 0.272 .002

Note. Bold values indicate the exceedance probability. This table summarizes the model fitting results. The parameter c is the inverse log temperature
parameter. A higher c means the participant is more likely to stick with the option that has a theoretically higher EV. The parameter of α, A, or α-pos (i.e.,
α for positive prediction errors in asymmetric learning models) capture recency effects, reflecting the extent to which recent outcomes influence subsequent
choices; higher values indicate faster decay of past experiences and stronger reliance on recent samples. The parameter a-neg in the asymmetric models
represents the learning rate for negative prediction errors. The shape parameter γ determines the curvature of subjective utility as a function of reward
magnitude, with lower values reflecting stronger discounting of reward magnitude. The loss-aversion parameter λ weights losses relative to gains, with
higher values reflecting greater loss aversion. The weighting parameter w in the hybrid model specifies the relative contribution of value-based, delta-rule
processing, such that lower values reflect greater reliance on frequency-based processing. Model fit was evaluated using BIC, BIC weights, Bayes factors
(BF10) and VBMS. Lower BIC values indicate better model fit, while higher BIC weights indicate stronger relative support. BIC-weights sum to one. BF10
represents the Bayes factor difference between a given model and the best-fitting model. Conventionally, a BIC difference of 0–2 provides little support for
the better model, 4–7 indicates moderate support, and differences of 10 or more indicate strong support. A BF10 greater than 3 is considered significant
evidence. Finally, the last three columns of the table report VBMS results, with BIC approximating log evidence: VBMS α values represent estimated
model frequencies; VBMS rk values indicate the probability that model k generated the data for a randomly selected participant; and VBMS φk reflects the
exceedance probability that model k is more likely than all alternatives at the group level. BIC = Bayesian information criterion; VBMS = variational
Bayesian model selection; delta-PVL = delta-prospect-valence-learning; decay-PVL = decay-prospect-valence-learning; EV = expected value.
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vice versa (Figure 4c). Given the overall stability of individuals’
best-fitting parameters across conditions, these results indicate that
individuals whose traits inclined them to favor C in the baseline
condition are more likely to shift toward A in the frequency
condition.

Discussion

In the science of decision making, it has long been argued that
the use of heuristic, fast-and-frugal strategies may be adaptive
(Gigerenzer, 1996; Gigerenzer & Gaissmaier, 2011; Gigerenzer &
Goldstein, 1996; Payne et al., 1988). Yet no study has systematically
examined whether such heuristics aremore or less likely to emerge in
individuals who demonstrate stronger learning performance. In the

present study, we addressed this question using a within-subject
design in which each participant completed the task twice—once
under baseline conditions and once with a reward-frequency
manipulation in an environment known to elicit frequency effects
(Don et al., 2019; Hu et al., 2025).

Our manipulation successfully altered participants’ behavior.
Participants strongly preferred the more valuable Option C in the
baseline condition but shifted to favor the less valuable Option A
when A was presented twice as often during training in the fre-
quency condition. Within-subject analyses further revealed two key
patterns. First, participants with better training performance gen-
erally achieved higher accuracy in the testing phase, except in CA
trials under the frequency condition, where higher training accuracy
predicted a stronger tendency to favor the frequently rewarded but
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Figure 4
Model Fitting Results

Note. Panel A: Higher C choice rates in the baseline condition significantly predicted better fit for decay-class models in the frequency
condition, but not for delta-class models (see Supplemental Figure 6 for baseline model fits). Panel B: Examination of the weight parameter in the
hybrid model showed that higher baseline C choice rates predicted reduced reliance on value-based delta processing in the frequency condition.
This suggests that individuals with higher baseline accuracy in CA trials may absorb less information from value-based strategies and rely more
on frequency-based processing when reward frequency was manipulated. Panel C: All model parameters showed significant interaction effects
across the two conditions, such that parameters positively associated with C choice rates in the baseline condition predicted the opposite or null
effect in the frequency condition, and vice versa. Given the strong parameter correlations across conditions, this pattern suggests that traits
leading individuals to favor C in the baseline conditionmay also predispose them to shift toward A in the frequency condition. Error bars indicate
95% CI interval. CI = confidential interval. See the online article for the color version of this figure.
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less valuable Option A. Second, accuracy across trial types was
generally consistent between conditions, whereas in the critical CA
trials, C choice rates in the baseline condition did not predict, and
even negatively trended with, C choice rates in the frequency
condition.
Computational modeling validated these behavioral findings.

Participants with higher baseline C choice rates were found to be
better fit by frequency-sensitive decay-class models in the frequency
condition but not frequency-insensitive delta-class models. In the
hybrid model, which combines a purely value-based and a purely
frequency-based process with a weighting parameter, these good
learners showed greater reliance on the frequency-based process
when the less valuable option was rewarded more often. Together,
these results suggest that individuals who demonstrate stronger
baseline learning are also those more likely to shift toward fre-
quency-based processing when strong frequency cues are present,
thereby exhibiting stronger frequency effects.
Since the IGT gained popularity, it has often been assumed that

focusing on reward frequency while neglecting underlying reward
values reflects impaired value learning associated with neuropsy-
chological deficits (Bechara et al., 1994; Bechara, Damasio, &
Damasio, 2000; Bechara et al., 1999; Bechara, Tranel, & Damasio,
2000). However, more recent studies consistently demonstrate that
even healthy participants prefer options yielding more frequent
rewards, despite their lower average value (Chiu et al., 2008; Don et
al., 2019; Horstmann et al., 2012; Hu et al., 2025; Kumar et al.,
2019; Lin et al., 2007; Steingroever et al., 2013). This suggests that
reward frequency is not merely a marker of deficit, but potentially a
fundamental component of human value learning and decision
making. Evidence from both the IGT and its inverted version further
underscores this point by demonstrating that frequent small wins
outweigh infrequent large losses, leading participants to view the
frequently rewarded option as superior (Horstmann et al., 2012;
Overman et al., 2004; Steingroever et al., 2013). Conversely, fre-
quent small losses overshadow infrequent large wins, prompting
participants to avoid these options even when the long-term value is
positive (Lin et al., 2012). In the present study, we extend this
literature by showing that reward frequency plays an indispensable
role in shaping subjectively perceived values. Crucially, individuals
with stronger baseline learning and decision-making performance
exhibited more pronounced, seemingly irrational, frequency effects.
This pattern supports the view that frequency effects are not simply a
sign of flawed learning in complex environments. Instead, they may
reflect an adaptive strategy shift, where good learners are able to
actively perceive, process, and integrate frequency cues into their
decision making as part of a flexible response to environmental
demands.
That said, our findings do not preclude the possibility that a rigid,

excessive focus on reward frequency can be maladaptive. Prior
research shows that frequency effects at the group level typically
emerge only under conditions of highly elevated environmental
uncertainty (Hu et al., 2025). Attending exclusively to immediate
rewards, without regard to long-term payoffs, in environments that
do not necessitate such a strategy switch may signal deficient
cognitive functioning, such as low self-control (Pang et al., 2015).
Thus, the adaptiveness of seemingly irrational heuristics, such as
frequency effects, depends on whether the environment calls for a
flexible shift away from purely value-based decision making, but
may become harmful when value-based strategies remain tractable.

Overall, our findings emphasize that frequency effects are neither a
mere cognitive flaw nor a one-size-fits-all strategy. Rather, it may
serve as a context-dependent adaptive tool that enables decision
makers to flexibly balance efficiency and accuracy when navigating
uncertain environments.

Limitations

One limitation of the present study is that the adaptive switching
from value-based decision making to seemingly irrational mental
shortcuts was examined only in the context of frequency effects in
reinforcement learning. Other heuristics that are not necessarily tied
to reward frequency, such as take-the-best, one-clever-clue, and
fast-and-frugal trees (Gigerenzer & Gaissmaier, 2011), require
further investigation to determine whether they, too, emerge more
strongly in better learners. Relatedly, although we found no evi-
dence that better learners were picking up alternative heuristic
processes beyond reward frequency in our comparison model set
(e.g., gain–loss asymmetry assumed by prospect-valence-learning
models, or positive–negative prediction-error asymmetry assumed
by the delta-asymmetric model), it remains possible that they may
engage other heuristics uncaptured by the set of comparison models
used here. In addition, it remains unclear whether such strategy
switching persists in environments characterized by low to moderate
uncertainty. We speculate that individuals with stronger learning
performance may be more resilient to frequency-based biases
when the environment is relatively simple to grasp, but this
possibility awaits empirical testing. Finally, this study was not
preregistered. Future preregistered replication work that extends
our findings or tests our predictions will be critical for further
validating and refining our results.

Conclusions

In conclusion, the present study demonstrates that frequency
effects, as long considered markers of impaired value learning, may
instead reflect an adaptive shift in strategy, particularly among
individuals with stronger learning performance. By combining
behavioral analyses with computational modeling, we showed that
better learners not only displayed stronger frequency effects under
reward-frequency manipulation but were also best captured by
frequency-sensitive models. These findings suggest that what
appears to be irrational bias may, under conditions of uncer-
tainty, represent a flexible adaptation when value-based strate-
gies are costly or unreliable. Ultimately, clarifying when and
why individuals adopt such seemingly irrational biases will
advance our understanding of the balance between rational value
learning and adaptive shortcuts in human decision making,
offering deeper insight into the nature of human rationality in
ecological, real-world contexts.
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