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Abstract

Assessing our confidence in the choices we make is important to making adaptive decisions, and it is thus no surprise that
we excel in this ability. However, standard models of decision-making, such as the drift-diffusion model (DDM), treat con-
fidence assessment as a post hoc or parallel process that does not directly influence the choice, which depends only on accu-
mulated evidence. Here, we pursue the alternative hypothesis that what is monitored during a decision is an evolving sense
of confidence (that the to-be-selected option is the best) rather than raw evidence. Monitoring confidence has the appealing
consequence that the decision threshold corresponds to a desired level of confidence for the choice, and that confidence
improvements can be traded off against the resources required to secure them. We show that most previous findings on per-
ceptual and value-based decisions traditionally interpreted from an evidence-accumulation perspective can be explained more
parsimoniously from our novel confidence-driven perspective. Furthermore, we show that our novel confidence-driven DDM
(cDDM) naturally generalizes to decisions involving any number of alternative options — which is notoriously not the case
with traditional DDM or related models. Finally, we discuss future empirical evidence that could be useful in adjudicating

between these alternatives.
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Introduction

As humans, we are able to perform complex behaviors
empowered by higher order cognitive processes, such as
judgment and goal-directed decision-making. Beyond this
ability, we are also able to monitor and assess such cogni-
tive processes as they unfold. Known as metacognition, this
feature of the human mind allows us to analyze the thoughts
that we have and adjust them in a controlled manner so as to
tune our own cognitive performance (Fleming et al., 2012).
In decision-making, such metacognitive assessment comes
in the form of choice confidence, or our subjective belief
that what we chose was indeed the correct (or best available)
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option. Choice confidence is useful in that it can help us
learn from our mistakes, or avoid a misallocation of scarce
resources (Yeung & Summerfield, 2012). In decisions where
there is an objectively correct answer (e.g., perceptual deci-
sions), confidence is highly correlated with objective accu-
racy, although it is not always properly aligned (Fleming &
Daw, 2017). It has been proposed that different individuals
have different levels of metacognitive bias (a systematic
mismatch between confidence and accuracy), metacogni-
tive sensitivity (ability to discriminate between correct and
incorrect responses based on feelings of confidence), and
efficiency (sensitivity conditional on performance; Flem-
ing & Lau, 2014). Moreover, in decisions where there is
no objectively correct answer (e.g., preferential decisions),
people are nevertheless able to report how confident they
are about their choices (De Martino et al., 2013). At the
neural level, various studies have mapped (retrospective
and prospective) aspects of metacognitive ability to (lat-
eral and medial) prefrontal areas and interoceptive cortices
(see review in Fleming & Dolan, 2012). Despite the exten-
sive interest and progress in studies of confidence in dif-
ferent domains of decision-making (e.g., perceptual, pref-
erential, economic), there is as of yet no widely accepted
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computational model that accounts for choice confidence.
This is especially true in the field of preferential (value-
based) choice, which is our primary interest. We believe that
an acceptable contender can be generated from the class of
models known as sequential sampling or accumulation-to-
bound, and we introduce our contender model in this work.

Within the field of decision-making, accumulation-
to-bound models are by far the most common'. Diffusion
decision models (most notably, the drift-diffusion model or
DDM) account very well for empirical data across a wide
variety of domains, including perceptual and value-based
decision-making (Forstmann et al., 2016). In value-based
decision-making, the DDM simultaneously explains choice
accuracy and response time (RT) distributions dependent
on the relative values of the options that comprise a choice
set (see review in Ratcliff et al., 2016). The basic premise of
these models is that upon presentation of the choice options,
information processing in the decision network of the brain
provides a signal about which option is more valuable. This
signal is assumed to represent some “true” value of the
options, but because there is noise inherent in neural infor-
mation processing, the signal is repeatedly probed until the
system can reliably declare one option to be more valuable
than the other. Figure 1 provides a simple illustration of the
process for an example decision. The core of the DDM is an
abstract decision variable that represents decision evidence
(that one option is better than the other) as it accumulates
across time. Though the evidence that this variable repre-
sents remains abstract in nature, there have been a variety
of proposals as to what the evidence actually is: a function
of the likelihood of each alternative response being correct,
given the sampled information (Edwards, 1965; Laming,
1968; Stone, 1960); a comparison between sampled informa-
tion and a mental standard (Link & Heath, 1975); a measure
of strength of match between a memory probe and memory
traces stored in long-term memory (Ratcliff, 1978); or the
difference in spike rate between pools of neurons represent-
ing the alternative options (Gold & Shadlen, 2001).

The basic components of the DDM, which relate to the
accumulated evidence decision variable, are the drift rate or
the trajectory at which it changes on average (proportional
to the “true” value difference of the options), the diffusion
noise parameter by which its trajectory is momentarily
perturbed (the extent of signal corruption in the system),
and the evidence threshold the arrival at which triggers a
choice (the minimum level of evidence required to declare
that one option is better than the other). It has been proven
that the DDM can provide the optimal solution to simple

! This is particularly true in the domains of perceptual and preferen-
tial decision-making, although it is also becoming more common in
the domain of economic decision-making.

Evidence

Time

Fig.1 Basic drift-diffusion process illustration. Evidence (verti-
cal axis) for one option versus the other (in a binary choice) evolves
across time (horizontal axis) until a threshold is reached. The thin
black line represents the ballistic trajectory, defined by the value of
option 1 minus the value of option 2, scaled by the drift rate parame-
ter. The purple trace represents the moment-by-moment accumulated
evidence, which deviates from the ballistic trajectory according to
random noise with variance set by the diffusion parameter. The blue
and red lines represent sufficient evidence thresholds for options 1
and 2, respectively. DDM drift-diffusion model

decision-making problems, where prior beliefs about the
option values are updated in a Bayesian manner through
sequential evidence sampling until a choice can confidently
be made based on posterior value beliefs (Fudenberg et al.,
2018; Tajima et al., 2016). That line of work also shows that
the optimal DDM decision thresholds should diminish over
deliberation time?, in any situation where the difficulty of
the task is not known a priori and where there is some cost
associated with evidence accumulation (as would be the case
in most preferential choice contexts; but see Malhotra et al.,
2018, for other scenarios where diminishing bounds might
not be optimal). As the accumulator is here defined as the
difference in the posterior estimates of option values, the
height of the threshold at the time of choice could directly
provide a measure of choice confidence (i.e., the probability
that the chosen option was better; Pouget et al., 2016). In
this case, the collapse of the threshold as time lingers could
be interpreted as a tradeoff between accepting a lower-than-
desired level of evidence (and, eventually, confidence) about

2 The collapsing threshold is a hallmark of the optimal rendition of
the DDM, though it is not a feature of the standard DDM. However,
some non-optimal versions of the DDM have also included collapsing
thresholds (Voskuilen et al., 2016).
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Fig.2 An illustration of how value estimates could have the same
mean but different precision. Posterior estimates of the difference in
option values (dV) might have similar means but very different levels
of precision. The left panel shows sample streams of evidence for two
different choice trials (one in blue, one in red). Notice that the sam-
ples fluctuate around the same average value, but with more (blue)

the choice in exchange for a conservation of deliberation
resources (e.g., time, metabolites, neural capacity).

One problem with using the threshold height as a direct
readout of choice confidence is that it does not consider the
precision of the posterior value estimates. In the basic DDM,
value estimates are point estimates, and the accumulating
evidence does not consider the uncertainties of these esti-
mates. A standard measure of uncertainty for (Gaussian)
probability distributions is the variance of the distribution,
or its inverse precision. The issue here is that with flat pri-
ors and Bayesian sequential updating, the difference in the
posterior means of one pair of options could be equivalent
to that of another pair, while each pair could have a differ-
ent level of precision. For example, the posterior estimates
of one option pair could have been formed from relatively
inconsistent evidence samples (i.e., many samples in sup-
port of either option, hence lower-precision posteriors),
whereas the posterior estimates of the other option pair
could have been formed from relatively consistent evidence
samples (i.e., most samples in support of the same option,
hence higher-precision posteriors; see Fig. 2). In this case,
both choices might reach the same evidence threshold, but it
seems intuitive that the option pair with the higher posterior
precision should correspond to higher choice confidence. In
fact, under the DDM framework, higher variability in the
evidence accumulation process causes the process to ter-
minate sooner (on average; see Lee & Usher, 2021), thus
implying that less precise information would lead to higher
confidence (because of the collapsing bounds). Using a
threshold based solely on the value difference of the options
as a measure of confidence cannot account for a fundamental
psychological dimension of confidence — people are more
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or less (red) variability. The right panel shows what the posterior
dV estimates for the two trials would look like — both have the same
mean, but the red estimate has a much higher precision than the blue
estimate. This higher-precision estimate should instill greater choice
confidence

confident when they decide based on more precise informa-
tion (Lee & Coricelli, 2020; Lee & Daunizeau, 2020, 2021).
To rectify this, the threshold height at the moment of the
choice response would need to be transformed as some func-
tion of the precision of the value estimates (e.g., scaled by
precision and passed through a sigmoidal function) in order
to calculate confidence. However, although this might solve
the problem mathematically, it would remain unclear as to
why the deliberation process would seek a target (threshold)
that would sometimes end up registering as high confidence
and sometimes low (setting aside the issue of the eventual
threshold collapse). More specifically, such an apparatus
would allow the process to terminate even if the value esti-
mates had very low precision, which would yield a low post
hoc confidence readout (suggesting that deliberation had
been terminated prematurely). It is unclear why the deci-
sion apparatus would sometimes make such low confidence
choices by design. It seems more reasonable to believe that
the same (initially high) level of confidence would always be
the default target for similar decisions, and that the threshold
that terminates the deliberation process should directly take
into account the precision of the value estimates.

Recent work has attempted to use the DDM to predict
choice confidence in addition to choice probability and
RT (Calder-Travis et al., 2020; Drugowitsch et al., 2019;
Kvam & Pleskac, 2016; Moran et al., 2015; Moreno-Bote,
2010; Pleskac & Busemeyer, 2010; Yeung & Summerfield,
2012). However, most such attempts have required addi-
tional assumptions and components on top of the DDM
itself, which detracts from the elegance of the original
model and its ability to so reliably account for key decision
variables. Given the success of the DDM in accounting for
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other key aspects of choice (i.e., choice probability and RT),
and assuming that confidence about a choice is inherently
linked to those other aspects (Kiani & Shadlen, 2009; Van
Den Berg et al., 2016), one might conclude that the DDM
should be able to simultaneously account for all three vari-
ables without the need for any ad hoc features. Calder-Travis
et al. (2016) conducted a thorough analysis of various sorts
of DDM found in the literature, specifically focused on their
ability to predict choice confidence in a variety of datasets.
However, those authors chose not to perform their model
comparison while simultaneously accounting for choice, RT,
and confidence. Furthermore, they only examined data from
perceptual decision studies, so it is unclear if their findings
generalize to preferential decisions.

One of the most frequently cited evidence accumula-
tion models of confidence is the two-stage dynamic signal
detection model (Pleskac & Busemeyer, 2010). As the name
implies, this model includes two separate (but linked) stages:
one in which evidence supporting the choice of one option
versus the other is accumulated until a threshold is reached
and the choice is made; one in which additional evidence
that accumulates after the choice is made informs an esti-
mate of confidence about that choice. Thus, confidence
under this model is calculated only after the choice has been
finalized, and it critically depends on the assumption that
additional evidence continues to accumulate (via the same
accumulator) after the choice response. Van den Berg and
colleagues used a similar approach, and additionally sug-
gested that confidence could be solicited at different time
points (Van Den Berg et al., 2016). Those authors relied on
the assumption that the evidence accumulator variable could
be queried both at the time that the choice was reported as
well as after some further delay to explain apparent changes
of mind (i.e., participants later opted to choose the option
that they initially rejected) and changes of confidence (i.e.,
participants later opted to choose the same option that they
initially chose, but with a different level of confidence). This
study therefore exposed the idea that not only does choice
evidence accumulate across time, but confidence does as
well — indeed, they are assumed to be based on the exact
same accumulator variable. The idea that confidence can be
monitored across deliberation time was further developed by
Drugowitsch and colleagues, who suggest that the optimal
stopping rule (i.e., the location and form of the response
threshold) was determined by a comparison of the cost of
continued evidence accumulation and the gain in confidence
that the decision-maker should expect from continued evi-
dence accumulation (Drugowitsch et al., 2012). While previ-
ous studies such as these already suggested that confidence
was derived from the same information as the choice itself,
that it could be queried at any point in time, and that such
queries should optimally control the decision process (or
at least its termination), they nevertheless all rely on the

assumption that both the accumulator variable and the corre-
sponding response thresholds pertain to raw evidence about
the choice options. Assessments of confidence, accordingly,
would require that the evidence signal be further processed
or transformed.

Here, we pursue an alternative hypothesis that the
response threshold in the DDM should directly represent
a target level of choice confidence, and thus that the evolv-
ing decision variable should represent the momentary level
of confidence across time. This idea has qualitatively been
proposed before as the diminishing criterion model for meta-
cognitive regulation of time investment (Ackerman, 2014).
In the present work, the decision variable is quantitatively
defined as a sigmoidal transformation of the absolute dif-
ference in posterior value estimates scaled by the posterior
precision (i.e., the normative posterior probability that one
option is better than the other, given the accumulated evi-
dence thus far). Note that this allows for the posterior pre-
cision to be incorporated dynamically throughout decision
deliberation. The underlying computational architecture
can be conceptually divided into two modules. One module
monitors confidence changes and releases response inhi-
bition when a satisficing target confidence level has been
achieved (see Lee et al., 2023; Lee & Daunizeau, 2021).
The other module enables the choice response in favor of
the option deemed to hold the highest value. This seemingly
superficial modification of the basic DDM has three main
implications. First, whereas previous models have assumed
that choice confidence is read out as a transformation of the
accumulated evidence after the choice has been made, we
propose that the transformation from evidence to confidence
occurs during (and is indeed an integral component of) the
decision process (Drugowitsch et al., 2012; Tajima et al.,
2016). We note that this does not preclude post-decisional
evidence from being incorporated into post-decisional con-
fidence reports (Desender et al., 2021; Moran et al., 2015;
Murphy et al., 2015; Navajas et al., 2016; Pleskac & Buse-
meyer, 2010). Second, the ensuing decision process grace-
fully generalizes beyond two-alternative decisions. This is
because confidence (i.e., the subjective probability that the
option estimated to be best at any point in time will actually
yield the highest value) can be derived for any number of
alternative options (see Appendix A). Third, the process thus
signals when a choice can be made with a satisfactory level
of confidence, but it does not directly control which option
will be selected.

Our formulation addresses a number of known shortcom-
ings of existing sequential sampling models. First, as we
hinted at above, basic DDMs cannot account for the impact
of value estimate uncertainty. Decision-makers form not
only estimates of value for the different options that they
consider, but also assessments of (un)certainty about those
value estimates (De Martino et al., 2013; Gwinn & Krajbich,
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2020; Lee & Coricelli, 2020; Lee & Daunizeau, 2020, 2021;
Polania et al., 2019). These feelings of certainty are impor-
tant, because they alter choice behavior (Lee & Coricelli,
2020; Lee & Daunizeau, 2020, 2021). Most existing ver-
sions of the DDM (or any other sequential sampling model)
exclude the possibility that option-specific value certainty
might play a role in the decision process. However, it has
recently been shown that the DDM indeed provides a better
explanation of choice data when the drift rate is adjusted to
reflect the different degree of certainty that the decision-
maker has about the value of each option (Lee & Usher,
2021). The authors demonstrated that the so-called signal-
to-noise DDM (snDDM) is capable of accounting for the
positive impact of option-specific value certainty on choice
consistency and confidence, and the negative impact on
RT (Lee & Coricelli, 2020; Lee & Daunizeau, 2021). The
snDDM presents an advance in sequential sampling mod-
els of choice, but it nevertheless relies on evidence sam-
ples drawn from static distributions. Our formulation, on
the contrary, is driven by value estimates that evolve across
deliberation. In particular, our formulation fundamentally
includes an increase in value certainty during choice deliber-
ation, which is consistent with empirical findings that value
certainty ratings are generally higher after choices compared
to before (Lee & Coricelli, 2020; Lee & Daunizeau, 2021).

An lllustrative Example of the Confidence-Driven
DDM (cDDM)

Our proposed confidence-driven DDM (cDDM) offers
several advantages over the standard DDM. For one, the
c¢DDM could be more easily adapted to decisions between
any number of options; standard DDMs only apply to binary
decisions (but see Kvam, 2019). Furthermore, the cDDM
could be directly applied to potentially any type of deci-
sion without having to adjust the meaning of its compo-
nents or substantially alter its parameters (e.g., perhaps
the target confidence level for a decision-maker might be
similar across decision domains, whereas the relative evi-
dence requirements might grossly differ). Finally, from a
computational perspective, it would seem more useful (or
parsimonious) for the brain to assess the reliability of the
relevant information (i.e., confidence about which option
seems better) as a choice response freely develops, rather
than simply keeping a tally of how many stochastic samples
favor each option, stopping when some arbitrary threshold
has been reached, and only then checking to see how con-
fident it is about the choice that would have already been
made by that point. Our proposal is in line with previous
work showing that decision-makers often change their minds
about which option is better during the course of delibera-
tion, and that such changes of mind coincide with changes
of confidence (Van Den Berg et al., 2016). Although that

@ Springer

previous work only focused on changes of confidence that
occurred between response onset and response termination
(in that task, participants registered their responses by mov-
ing their hands from the center of the screen to one of the
four corners), it directly implies that confidence is monitored
across time for as long as evidence continues to accumulate.
This suggests that confidence is indeed continuously moni-
tored throughout deliberation, with (usually unobservable)
changes of mind being triggered whenever confidence (that
the current to-be chosen option is the best) disappears.

In addition, the cDDM includes a "collapsing bound"
mechanism, which encourages the decision process to ter-
minate even if the target level of confidence has not yet
been achieved — and hence to make the choice with a lower
level of confidence, because further resource expenditure
(cognitive, metabolic, or other) to increase confidence is
deemed too costly to continue (see Lee et al., 2023; Lee &
Daunizeau, 2021). This is analogous to what happens in the
optimal DDM, where the threshold collapses explicitly due
to a cost of deliberation that accumulates over time (Fuden-
berg et al., 2018; Tajima et al., 2016; see Malhotra et al.,
2018, for an alternative rationale for collapsing thresholds).
An alternative (but mathematically similar) perspective is
that the decision mechanism includes an urgency signal that
amplifies the incoming decision evidence, which (akin to the
collapsing bound mechanism) encourages an end to delib-
eration and a final choice response without excessive further
delay (Churchland et al., 2008; Thura & Cisek, 2014; van
Maanen et al., 2016).

Thus, the decision process of the cDDM can be summa-
rized as a continuous readout of choice confidence, driven
by a continuously-updated value signal (both estimate and
precision for each choice option) towards a predetermined
target confidence level, which is gradually reduced in con-
sideration of the growing resource expenditure or urgency of
the decision (see Fig. 3 for an illustrative example).

Model

In this paper, we propose a novel version of the DDM that
involves only minor alterations to the core mathematics,
but major alterations to the core conceptual interpretation
of decision control. Taken together, these alterations allow
our new cDDM to directly account for choice confidence
alongside choice consistency and RT, in an integrated man-
ner. Below, we first summarize the standard mathematical
formulation of the basic DDM, complete with some well-
known optional parameters (starting point bias, non-decision
time, collapsing bounds). We then describe the alterations
that distinguish the cDDM from the traditional DDM, as
well as their contrasting assumptions and interpretations.
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Fig.3 An illustrative example of the confidence-driven drift-diffusion
model (cDDM) process. The blue trace illustrates the evolution of
choice confidence across response time (RT). At t = 0, the options are
unknown, and thus confidence = 0. Momentary precision-weighted
value evidence drives confidence until it reaches a threshold and a
choice is made. Note that the target confidence threshold collapses
over time, as the decision-maker recognizes the importance of con-
serving resources (e.g., time and cognitive effort) rather than continu-
ing to increase confidence

In the basic DDM, the decision deliberation pro-
cess begins with both time and cumulative evidence
equal to zero. At each time step (t) after the onset of
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Fig.4 Simulated drift-diffusion model (DDM) trials. An illustrative
example of five simulated trials of varying value difference (dV),
based on a basic DDM with collapsing bounds. Each colored curve
represents one trial. The left plot shows the accumulation of evidence

deliberation, evidence (e) for each choice alternative
(i) is drawn from an independent Gaussian distribution
whose mean (;) is the true value of the option and
whose variance (6%) represents the amount of signal
corruption due to the inherent stochasticity of neural
processing (which is the same for all options):

e, ~N(p,0%),Vi €{1,2}

The evidence for each option at each time step is com-
pared and the balance is added to the cumulative total evi-
dence (x) for one option over the other:

Xp=X_pte, —éy,
xO = 0

The deliberation process proceeds until the accumu-
lated evidence reaches one of two symmetric predeter-
mined threshold bounds (b for option 1, -b for option 2,
b>0). It is possible to bias the starting point of the process
(xo) away from zero, but this is arbitrary unless there is
a good reason to assume that one option is a priori more
likely to be better (e.g., instruction about or observation
of an asymmetrical environment during a sequential deci-
sion-making task). It is also possible to include a meas-
ure of non-decision time (NDT) to represent the strictly
positive time that it takes for the brain to process percep-
tual information while recognizing the options or motor
control information while entering a response, which is
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across time, where each process terminates upon reaching one of the
bounds. The right plot shows how the evolution of confidence would
look if it were a moment-by-moment sigmoidal transformation of the
cumulative evidence
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simply added to deliberation time (DT) to calculate total
RT.?> As mentioned above, one possible way to map from
evidence to confidence in the traditional DDM would be
to pass it through a sigmoidal transformation. Figure 4
illustrates simulated evidence accumulation, and the cor-
responding confidence transformation, for 100 trials of
varying difficulty (i.e., unsigned value difference between
the options).

In the cDDM, the momentary variable that is monitored
is not merely a relative value signal for the options (as in the
basic DDM)), but rather an assessment of confidence (c,) that
considers both the momentary value estimates of each option
(v; and the momentary precision of those value estimates
(p;»)» passed through a sigmoidal transformation to compute
the probability that one option is better than the other:

e, ~N(u.o*+0?).Vi € (1,2}

1 V= > TV i € {12}
vio=0,Vi € {1,2}

2) pi,= 6%,\7’ i € {1,2}

3) ¢, = 2 —1

1 1
TNy E—
1+e Plt P2t

where now each option has its own specific evidence vari-
ance term (c%) in addition to the generic processing noise
(6?) and the L3 term in the confidence equation derives from

=

a moment-matching approximation to the Gaussian cumula-
tive density function (Daunizeau, 2017). Anecdotally here,
the standard sigmoid (logistic) function undergoes an affine
transformation to ensure that the confidence readout falls
within the range [0,1), with 1 indicating maximal confidence
about knowing which option is correct and 0 indicating a
complete lack of confidence. Equation 1 defines the momen-
tary value estimate of each option at each point in time (v;,)
as the average of all evidence samples collected up until that
time point. Equation 2 defines the momentary precision of
each value estimate at each point in time (p; ) as the sum of
the precision of all evidence samples collected up until that
time point. Finally, Equation 3 defines the assessment of
confidence (c,), which is the key novel quantity that we intro-
duce in the cDDM. This is defined as (an affine transforma-
tion of an approximation of) the cumulative density function
of a Gaussian whose mean is the unsigned difference in the
option value estimates and whose variance is the sum of the
variance terms for each estimate. Confidence is thus defined
as the probability that the options do not have the same value

3 For our purposes here, we will not consider non-essential param-
eters such as x, and NDT. For a possible extension of our model that
might relate to x, and NDT, see Appendix B.
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(where another part of the system keeps track of which
option has the higher value estimate). Note that the evidence
(e) that lies at the core of the process is the same as in the
standard DDM, namely momentary signals about the rela-
tive values of the choice options (e.g., neural firing rates in
pools of neurons representing either option). This enables a
direct comparison between the standard DDM and the
cDDM, in terms of numerical simulations. Note that the
update of the sufficient statistics of value representations can
be described in two distinct manners, including as a Markov
decision process (which involves simple difference
equations).

The decision process will continue to step forward in
time and acquire additional samples of value evidence until
confidence reaches the boundary (b) representing a prede-
termined target confidence level. The final inferred values
of the options will be v;*, where 7 is the time at which the
process terminated. The choice will be implemented in favor
of whichever option corresponds to the highest value of v
(i.e., response inhibition will be released when the confi-
dence threshold is crossed, allowing the strongest value
signal at that point to drive the decision-maker’s response
behavior). Figure 5 illustrates simulated confidence accumu-
lation, and the corresponding value estimate refinement, for
100 trials of varying difficulty.

Results

Although we present the cDDM here as a theoretical
model, it is nevertheless important for us to demonstrate
that it is able to account for certain relevant findings previ-
ously reported in the literature. To permit this, we simu-
lated data under the cDDM. Specifically, we created
100,000 trials each with two options whose means were
independently drawn from a uniform (0, 1) distribution and
whose standard deviations were independently drawn from
a uniform (1,2) distribution. To prevent outlier trials with
excessively long RTs, we arbitrarily set a maximum RT at
10,000 time steps (t) at which point the accumulation pro-
cess would stop regardless of the current state of confi-
dence. We arbitrarily set the shape of the response thresh-
old (t = 0:10,000) according to the formula: %000 This

14-¢ 1000
established an initial (t = 0) target confidence of approxi-

mately 1, which gradually decayed with a rate that is at
first increasing, then decreasing in approach of a target
confidence of approximately O at t = 10,000. For the free
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Fig.5 Simulated confidence-driven drift-diffusion model (cDDM)
trials. An illustrative example of five simulated trials of varying value
difference (dV), based on the cDDM. Each colored curve represents
one trial. The left plot shows the evolution of confidence across time,

parameters for the rate of evidence accumulation and the
degree of neural processing noise, we manually selected
parameters a value of 0.1 and 6, respectively, which
seemed to produce output (choice probability, RT, and
confidence) that reasonably resembled previously-pub-
lished empirical data in terms of the observed range of
each variable and the qualitative relationships between the
variables. Varying the choice of parameters beyond a cer-
tain range could alter the qualitative nature of the simu-
lated output. However, as the purpose of this theoretical
study is merely to demonstrate the workings of the cDDM
and its ability to qualitatively account for empirical find-
ings, not to formally fit or quantitatively compare models,
a proper formal parameter sensitivity analysis is beyond
the scope of this work. As we present below, the cDDM
can qualitatively reproduce a wide range of findings using
a consistent set of parameters.

To simulate the cDDM process, each trial started with
time, value estimates and precision for each option, and
confidence all reset to zero. At each time step, a random
sample of evidence was drawn for each option, which was
scaled by the drift rate. The value estimate of each option
was updated in a Bayesian manner, with the new evidence
and already incorporated evidence scaled by their relative
precisions before being summed together. The value preci-
sion for each option was updated as the previous level of
precision plus the precision of the new evidence. Momentary
confidence was calculated based on the momentary value
estimates and precision, and the process terminated when
confidence reached the threshold.

cDDM
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where each process terminates upon reaching the bound. The right
plot shows how the evolution of estimated value difference would
look if it were to be extracted from the confidence signal

The most common behavioral findings, reported in a
number of previous studies, are the general relationships
between choice difficulty (inversely quantified as the dif-
ference in the choice option values as subjectively rated in
a separate task, or dV), RT, and choice confidence. Fig-
ure 6 presents these patterns as exemplified in data pooled
together from three different studies (Lee & Coricelli,
2020; Lee & Daunizeau, 2020, 2021), alongside the pat-
terns present in data simulated under the cDDM (where dV
indicates the true latent value difference of the options on
each trial). The cross-participant mean correlations between
dV and RT (see Fig. 6A), between dV and confidence (see
Fig. 6B), and between RT and confidence (see Fig. 6C) in
the empirical data are -0.22 (p < .001), 0.31 (p < .001), and
-0.30 (p < .001), respectively. In the exemplary set of cDDM
parameters, the correlations are -0.75, 0.72, and -0.98 (see
Figs. 6D-F). Note that without even needing to perform
quantitative model fitting, it is evident that the cDDM quali-
tatively reproduces the same patterns found in the empirical
data. The weaker correlations in the empirical data relative
to the simulated data are expected due to additional sources
of noise that are outside the scope of the model. Further-
more, the cDDM cannot reproduce the stochasticity in the
empirical relationship between RT and confidence because
that relationship is explicitly defined in the model formula-
tion (see Fig. 6F). The origin of these relationships under the
cDDM can be summarized as follows. Trials with lower dV
will take longer to muster confidence, through either preci-
sion gain or estimate revision (thus, the negative relationship
between dV and RT). These trials will reach the collapsing
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Fig.6 Relationships between choice ease, response time (RT), and
choice confidence. In experimental data pooled together from three
previous studies (n = 155), RT decreases with choice ease (unsigned
value difference or dV; panel A), confidence increases with dV (panel
B), and RT and confidence are negatively correlated (panel C). Each

confidence threshold at a later point in time on average (thus,
the positive relationship between dV and confidence). The
negative relationship between RT and confidence is by con-
struct, because the confidence threshold collapses across
deliberation time.

The three-way relationship between choice probability,
response time, and choice confidence was summarized in
a convenient format by de Martino et al. (2013). Specifi-
cally, the authors showed that choices were more consistent
with subjective value ratings when participants were more
confident about those choices, resulting in higher logistic
regression slope parameters for more confident choices.
They also showed that more difficult choices (i.e., lower
dV) corresponded to longer deliberation (i.e., higher RT),
and that more confident choices were made more quickly,
even when accounting for difficulty level. We replicated
those findings using the pooled data from the studies men-
tioned above (Lee & Coricelli, 2020; Lee & Daunizeau,
2020, 2021). In this empirical data, the cross-participant
mean logistic slopes for low and high confidence trials were
6.6 and 15.0, respectively (difference in slopes = 8.4, p <
.001; Figs. 7A,B). Cross-participant mean RT for low dV
/ low confidence trials was greater than for high dV / low
confidence trials (0.27s, p < .001), as well as for low dV /
high confidence trials (0.49s, p < .001). Cross-participant
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blue dot represents one trial; green curves show the means across
equally spaced dV bins. The same patterns were present in data simu-
lated under the confidence-driven drift-diffusion model (¢cDDM; pan-
els D-F)

mean RT for high dV / high confidence trials was lesser
than for low dV / high confidence trials (0.35s, p < .001),
as well as for high dV / low confidence trials (0.57s, p <
.001). We also replicated the same findings in data simulated
under the cDDM (Fig. 7). The observation that choices are
more consistent with value ratings on trials that had higher
confidence can simply be explained by the fact that most
high-confidence trials are easy (i.e., high value difference)
and most low-confidence trials are difficult (i.e., low value
difference). The three-way relationship between dV, confi-
dence, and RT is more interesting. Under the cDDM, even
when controlling for dV, trials will randomly vary in terms
of how much congruent versus incongruent information is
processed (i.e., how the trial-specific random information
samples help or hinder momentary confidence). Some trials
will benefit from more information earlier during delibera-
tion, and thus terminate with higher confidence and lower
RT. Other trials will not receive the same benefit, and thus
terminate with lower confidence and higher RT.

Another interesting finding reported in the literature is
the observation that choice confidence increases with the
value difference of the options (dV) for correct choices, but
confidence decreases with dV for error choices. This was
demonstrated in rats, which signaled their choice confidence
by how long they were willing to wait in anticipation of their
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Fig.7 Confidence corresponds to greater choice consistency and
lower response time (RT). In experimental data pooled together
from three previous studies (n = 155), choices are more consistent
with value ratings on high versus low confidence trials (panels A
and B, blue vs. red; median split on confidence, within participants).
Responses are faster for high versus low dV trials (median split on
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Fig.8 The relationship between choice ease and choice confidence
is different for consistent and inconsistent trials. In experimental data
pooled together from three previous studies (n = 155), confidence
increases with choice ease (unsigned value difference or dV) for
consistent trials (where the chosen option aligns with value ratings;

predicted reward in an olfactory discrimination task (Kepecs
et al., 2008). It turns out that this pattern is also observable
in the behavioral data from the studies mentioned above (Lee
& Coricelli, 2020; Lee & Daunizeau, 2020, 2021), although
it was not previously reported. Across participants, the mean
correlation between dV and confidence for consistent and

dV, within participants), as well as for high versus low confidence tri-
als within both high and low dV trials (median split on confidence
within median split on dV, within participants; panel C). The same
patterns were present in data simulated under the confidence-driven
drift-diffusion model (cDDM; panels D-F)
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panel A in blue) but decreases with dV for inconsistent trials (panel
A in red). Each dot represents one trial; curves show the means across
equally-spaced dV bins. The same patterns were present in data sim-
ulated under the confidence-driven drift-diffusion model (cDDM;
panel B)

trials was 0.37 (p < .001), and the mean correlation between
dV and confidence for inconsistent trials was -0.10 (p <
.001; Fig. 8). Data simulated under the cDDM also exhibit
this pattern (correlation for consistent trials = 0.71, correla-
tion for inconsistent trials = -0.09; Fig. 8). Importantly, the
same exact simulated data (in particular, the same generating
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parameters) were used to create all the plots in Figs. 6, 7,
and 8. This effect arises under the cDDM because inaccurate
responses are caused entirely by noise that pulls the accumu-
lator away from its pure (i.e., noise-free) ballistic trajectory.
Such noise delays the choice response (in contrast to noise
that pushes the accumulator towards an accurate response,
which hastens the choice response). Therefore, the average
response time for inaccurate trials will be longer than for
accurate trials. Because the cDDM includes a confidence
threshold that collapses over time, inaccurate trials will (on
average) conclude with lower levels of confidence than accu-
rate trials.

Empirical Hurdles for Confidence Models to Explain

The literature on choice confidence has exposed a variety of
different empirical findings. Many of these findings are so
robust that it has been proposed that any worthy model of
confidence should be able to account for them (Pleskac &
Busemeyer, 2010). We here put the cDDM to the test and
note that it predominantly passes these hurdles:

1. Speed-accuracy trade-off. It has long been known that
decision time and accuracy are positively correlated,
in the sense that participants respond more accurately
(on average) when they are allowed to or otherwise
choose to take more time before reporting their choices.
Within the accumulation-to-bound framework, this is
typically enabled by allowing the response boundary to
vary across conditions: contexts where fast decisions are
required or encouraged impel participants to set lower
response boundaries compared to those in contexts
where accurate decisions are encouraged. The cDDM is
a specific instance of the accumulation-to-bound frame-
work and is thus able to account for this speed-accuracy
trade-off effect. Note, however, that this hurdle describes
comparisons across different choice contexts. Within a
given context, both the basic DDM and the cDDM will
predict the opposite pattern (i.e., longer average delib-
eration time should correspond to lower average accu-
racy).

2. Positive relationship between confidence and stimulus
discriminability. It has also long been known that con-
fidence is positively correlated with stimulus discrimi-
nability (e.g., the difference in subjective value ratings
between options in a value-based decision). Under
the cDDM, confidence is defined as a monotonically-
increasing function of value difference. Thus, while
sampling stochasticity will lead to trial-by-trial varia-
tions in confidence levels at the time of choice, there will
always be a positive correlation (across trials) between
value difference and confidence.
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Resolution of confidence. Choice accuracy and con-
fidence are both increasing functions of stimulus dis-
criminability, otherwise referred to as choice ease. It is
therefore not surprising that accuracy and confidence are
themselves positively correlated. However, the positive
relationship between accuracy and confidence typically
remains even after controlling for choice ease/difficulty.
In essence, this means that for a fixed difficulty level,
participants report greater confidence for choices that
turned out to be accurate than for choices that turned
out to be inaccurate. We verified this via simulation (see
Fig. 8).

Negative relationship between confidence and decision
time. There is typically a strong relationship between
decision time and confidence, where slower decisions
are generally associated with lower confidence. This
effect is fundamental to the cDDM, where the confi-
dence threshold (i.e., the boundary representing the
momentary target confidence level at which a response
will be made) decreases across decision time.

Positive relationship between confidence and decision
time. Participants report higher levels of confidence (on
average) during experimental conditions where they
are either allowed or encouraged to take more time
to deliberate before entering their choice responses.
Under the cDDM, momentary confidence levels (dur-
ing deliberation, prior to response) generally increases
with decision time, as considering more information
samples leads to higher-precision value estimates and
thus higher choice confidence. The cDDM assumes that
decision-makers will continue to deliberate until their
confidence reaches a threshold level. However, if one
were to relax this assumption and force participants to
respond early (as is done in so-called interrogation para-
digms), it should be clear that average confidence levels
will be greater when participants are allowed more time
before responding. Alternatively, if one were to retain
the threshold feature of the cDDM and merely encour-
age shorter or longer deliberation times (as is done in
speed vs. accuracy optional stopping paradigms), it
would also be the case that the slower conditions (i.e.,
those where accuracy was encouraged) would gener-
ally lead to greater confidence as compared to the faster
conditions (i.e., those where speed was encouraged), as
participants would utilize higher response thresholds in
the former.

Slow errors. Average decision times are typically longer
for inaccurate versus accurate responses. As explained in
point 3 above, the cDDM yields this pattern of results,
which we also confirmed via simulation (see Online
Supplementary Material (OSM)).
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7. Fast errors. Certain previous studies demonstrated that
average decision times are shorter for inaccurate ver-
sus accurate responses when the choice difficulty is low
and particularly when speedy responses are encouraged.
Using simulation analysis, we found that the cDDM
can recreate this pattern (see OSM). However, we note
that recreating this pattern while simulating the cDDM
required setting the diffusion noise parameter higher
than that used to demonstrate the other results reported
in this study.

8. Increased resolution in confidence with time pressure.
Under conditions of time pressure, it seems that there
is an increase in the resolution of confidence (see point
3 above). In essence, this means that there will be a
larger gap between the average confidence reported for
accurate versus inaccurate responses when participants
are required or encouraged to decide more quickly. The
cDDM can recreate this effect by increasing the rate at
which the confidence threshold collapses when decision-
makers are in situations where they would feel pressure
to respond more quickly. We verified this via simulation
(see OSM).

Discussion

It is widely assumed that decision-making consists of an
accumulation-to-bound process, during which decision evi-
dence (that one option is better than the other) is accumu-
lated over time until a threshold is met (Gold & Shadlen,
2007). This hypothesis is implicit in many mainstream mod-
els of decision-making and in particular the DDM, which
has been highly successful in explaining choice and reaction
time data across a very large number of studies (Ratcliff
et al., 2016) but which requires additional assumptions to
be able to simultaneously explain choice confidence. An
alternative suggestion is that the brain uses a multiplica-
tive urgency signal® that encourages an end to deliberation
and a final choice response without excessive further delay
(Churchland et al., 2008; Thura & Cisek, 2014; van Maanen
et al., 2016). Computational models have been proposed in
which the evidence accumulator is amplified at a rate that
increases across time, representing the urgency signal (Cisek
et al., 2009; Ditterich, 2006). In the DDM, an amplified drift
rate is mathematically equivalent to a diminished threshold
(if the noise term is adjusted accordingly), so the purported

# Urgency signals are typically presented with respect to time specifi-
cally, where responses are made sooner in order to save time. Rising
deliberation costs and urgency are not mutually exclusive, and in fact
the latter can be considered a special case of the former. Furthermore,
one could monitor both time urgency and other costs of deliberation
and diminish the confidence threshold in response to either or both.

urgency signal might be functionally identical to the col-
lapsing bound in the optimal DDM. In any case, neither of
these models considers online (intra-decision) confidence
monitoring to be instrumental to triggering a choice.

Here, we advance the alternative hypothesis that what is
monitored during a decision is the momentary level of con-
fidence across time and that the decision threshold thus cor-
responds to a target level of choice confidence. This proposal
is related to that of Lee and Daunizeau (2021), which argued
that deliberation time optimizes a form of effort-confidence
tradeoff, whereby decision-makers will choose to invest time
when they expect to achieve a confidence gain that exceeds
the anticipated cost of deliberation effort. Here, confidence
is used primarily in a prospective manner, in the sense that
the decision control system sets the target confidence level
based on early (pre-deliberation) value representations, and
ignores incoming information obtained during deliberation.
In contrast, the cDDM model is reactive: incremental mental
effort accumulates evidence that drives (partially stochas-
tic) changes in confidence until it eventually reaches a pre-
defined threshold, which terminates the process and triggers
a choice. Both perspectives share the notion that by investing
deliberation time, one should expect to achieve higher confi-
dence than would be achieved by choosing prematurely (see
also Chaiken et al., 1989). A related idea has been proposed
in the realm of risky choice (Navarro-Martinez et al., 2018).
Here, evidence samples based on probabilistic utility func-
tions serve as input into a #-test calculation (mean / standard
error of the mean) and the decision-maker stops deliber-
ating when the 7-score reaches a target confidence level.
This work was preceded by theoretical studies of percep-
tual choice demonstrating that optimal decision thresholds
should depend on confidence (Drugowitsch et al., 2012).
Importantly, the latter model is both prospective (decision
thresholds rely on anticipated confidence gains) and reac-
tive (confidence is updated across deliberation time with
respect to current levels of accumulated evidence). How-
ever, the validity of these decision control models relies on
two potentially limiting assumptions: (i) the mechanism by
which accumulated evidence changes value representations
is known by the system that controls decisions; and (ii) only
two options need to be compared.

With the cDDM, we relax these assumptions and sug-
gest that there exists a central confidence-monitoring system
in the brain that performs a similar function across a wide
variety of decisions. This system effectively decides when to
decide and is agnostic about the details of the actual decision
about to be implemented. Importantly, this unique confi-
dence system would not need to consider specific knowledge
about upstream evidence accumulation processes or down-
stream decision steps (i.e., the choice declaration or imple-
mentation), allowing it to perform its duty irrespective of the
current choice context. The medial prefrontal cortex (mPFC)
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has been suggested as such a confidence-monitoring brain
region, as fMRI activation represented confidence scores
across a variety of value-based tasks (Clairis & Pessiglione,
2022). Response confidence is also tracked by the ventro-
medial prefrontal cortex (vmPFC) and a prefronto-parietal
network, similarly for both memory-based and perceptual
decisions (Rouault et al., 2021). Furthermore, neural firing
rates in the rat orbitofrontal cortex (OFC) track confidence
during olfactory discrimination (Kepecs et al., 2008). Under
the cDDM, the cessation of deliberation would be influ-
enced not only by confidence accumulation, but also by the
rate at which the response threshold collapses. A separate
brain region might thus monitor the investment of cognitive
effort, with the dorsomedial prefrontal cortex (dmPFC) hav-
ing been suggested as a potential candidate region (Clairis
& Pessiglione, 2022). The interplay between these regions
would thus control the dynamics of an effort-confidence
tradeoff in deciding when to decide (Lee et al., 2023; Lee &
Daunizeau, 2021).

We argue that the novel "confidence accumulation” pro-
posal has computational advantages over the standard "evi-
dence accumulation" point of view, and that it permits us
to recast several existing empirical findings in novel terms.
Furthermore, our approach allows us to make some novel
empirical predictions, which we discuss below.

Computational Advantages of the cDDM

From a computational perspective, one may ask, "What is
more worthwhile to accumulate in diffusion decision mod-
els: evidence or confidence"? Accumulating confidence
rather than evidence entails three main computational
advantages.

First, the cDDM includes a built-in mechanism that per-
mits accounting for not only the evolving balance of evi-
dence about the values of the different options, but also a
measure of certainty about those values. This allows for a
more direct readout of confidence at the time a choice is
made, relative to the basic DDM (which ignores the concept
of value certainty), by taking into account the precision of
the posterior value estimates. Moreover, it also allows for a
direct readout of confidence at any time prior to the choice
response (i.e., during deliberation). Thus, the decision appa-
ratus can distinguish from situations where the instantaneous
balance of evidence is equal but the precision of that evi-
dence differs, which would allow for the system to optimally
determine whether it should continue to deliberate or not.
Specifically, in situations where the accumulating evidence
has lower precision, deliberation should persist for longer
(cf. Lee & Usher, 2021). This feature is shared with the
model of Drugowitsch and colleagues (Drugowitsch et al.,
2012), which is also controlled by a moment-by-moment
assessments of confidence.
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Second, a decision mechanism that accumulates con-
fidence (like the cDDM) generalizes more easily to deci-
sions between any number of options, compared to one that
accumulates evidence (like the basic DDM). The DDM
was originally conceived to model decisions between two
alternatives. While it could be extended to account for
decisions between multiple alternatives, such an extension
would require introducing multiple decision variables, which
might become implausible as the computational cost would
increase exponentially with the number of choice options
(Churchland et al., 2008; Roxin, 2019). Additionally, this
would be computationally expensive, as it would require
keeping track of the momentary rankings across options.
On the contrary, the cDDM can model multi-alternative
choices using a single compound decision variable that
tracks the difference between the posterior probabilities of
the best option and all of the other options (see Appendix
A). As such, the cDDM can handle arbitrarily-large choice
sets without adding much complexity to the computations
involved. This is crucial to the extent that real-life decisions
typically involve more than two choice options (in contrast
to contrived laboratory decisions).

Finally, specific settings of the cDDM will yield decisions
that optimally trade off confidence gain (towards the target
level) and effort (to increase confidence). This has many impli-
cations. First, consider situations where an excessive amount
of time is required to increase confidence or when time is laps-
ing without any increase in confidence: it may then be better
to decide immediately (even randomly) rather than to spend
additional time deliberating. To afford this optimal cost-benefit
tradeoff, the brain needs to be able to prospectively anticipate
the confidence gain it could achieve by investing additional
deliberation time. In the DDM framework, it can be shown
that achieving such optimal decision times eventually implies
setting a threshold that collapses with a rate that increases with
the cost of deliberation time (Fudenberg et al., 2018; Tajima
et al., 2016). This directly applies to the cDDM. Importantly,
however, the establishment of this optimal decaying threshold
relies upon restrictive assumptions regarding how evidence
is used to modify uncertain value representations, which
enable the prospective evaluation of the costs and benefits
of waiting versus deciding now (Drugowitsch et al., 2012).
In particular, these assumptions include the notion that evi-
dence is itself assimilated in an optimal (Bayesian) manner,
which neglects systematic errors such as confirmation and/or
optimism biases (Kappes et al., 2020; Rollwage et al., 2020;
Sharot, 2011) or asymmetries in the impact of evidence for
default versus alternative options (Feltgen & Daunizeau, 2021;
Lopez-Persem et al., 2016). Under this view, optimal decision
timing requires specific decision control systems that cannot
generalize to different types of decisions. Nevertheless, one
can relax these assumptions by simply considering that the
potential magnitude of the cumulative (random) perturbations
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of value representations will increase with decision time (Lee
& Daunizeau, 2021). This would endow the cDDM with a pro-
spective threshold-setting mechanism without committing to
detailed assumptions regarding evidence assimilation. In turn,
the same decision control system (extended cDDM) would
strike at a cost-benefit balance that generalizes over decision
types.

Second, consider situations in which decision-relevant
information processing can be accelerated, for example, by
investing more attentional and/or mnesic resources. This
implies that both speed and accuracy can be increased, at the
cost of intensifying mental effort. This can be achieved if the
brain monitors another variable throughout the deliberation
process: a resource expenditure monitor® that represents the
total amount of cognitive resources that have been invested
in the current decision across time. As resource expenditure
approaches some critical level, where the anticipated benefit
of further expenditure diminishes towards the anticipated
cost, this signal would encourage the decision process to
terminate even if the target level of confidence were not yet
achieved (Zenon et al., 2019; see Shenhav et al., 2017, for a
review). The ensuing effort-confidence tradeoff would thus
modulate optimal decision times with respect to the neu-
rocognitive demands of the decision task. More precisely,
optimal decision times would now depend upon the relative
costs of effort duration and intensity.

Reinterpreting Empirical Findings through the Lens
of the cDDM

Whether confidence is monitored during (or in parallel with)
a choice or after it has been the object of a longstanding
debate (Fleming & Daw, 2017). However, many recent stud-
ies suggest that confidence judgments influence the develop-
ment of choice responses rather than just being post-hoc read-
outs (Schulz et al., 2021). For example, people who already
feel confident about their choice after accumulating a certain
amount of evidence do not accumulate additional evidence
(or they process only choice-congruent information from that
point forward; Rollwage et al., 2020). Furthermore, differ-
ent people have different rates of urgency during a choice
(which can equivalently be interpreted as having different
rates of threshold collapse, meaning that they are more or
less willing to accept lower confidence in exchange for sav-
ing effort; Hauser et al., 2017). All these studies (and others)
suggest that the monitoring of confidence is an integral part

3 There is debate about what resources are consumed in a costly
manner during cognitive processes, including metabolites, time, or
capacity (Zenon et al., 2019; see Shenhav et al., 2017, for a review).
For our purposes, we remain ambivalent and use the term resources
in a more abstract sense (i.e., whatever the true costly resource turns
out to be, our model will not change).

of the decision process and influences it in real time. One
possible way to conceptualize these findings is that the deci-
sion process consists of two parallel processes: an evidence
accumulation process that is responsible for the choice and
a confidence monitoring process (carried out with a slight
delay, since it needs to take as input the momentary state of
evidence accumulation) that can influence the evidence accu-
mulation (e.g., by setting collapsing bounds). But another
possibility is encapsulated by our cDDM model, which sim-
ply proposes that decision-making control only requires a
single (confidence accumulation) process.

Beyond real-time confidence monitoring, there is already
some strong evidence that people explicitly use confidence
to control the speed-accuracy trade-off for their choices. In
arecent study, participants were asked to make their choices
(distinguish between Gabor patches of different orientations)
such that they would expect to achieve 70%, 85%, or 90%
accuracy across trials (Balsdon et al., 2020). Participants
were indeed able to tune their behavior in this way, decreas-
ing RT for lower target confidence and increasing RT for
higher target confidence, with subjective confidence levels
aligning with objective accuracy percentages. Furthermore,
when allowed to respond without any externally-imposed
confidence target, participants generally stopped accumulat-
ing evidence much earlier and achieved accuracy/confidence
levels that were lower than what they were demonstrably
capable of (in the high target confidence condition). At the
very least, this supports the claim that decision-makers trade
confidence against the cost of deliberation time, which is
consistent with the cDDM framework. Additional empirical
evidence in support of the notion that decision-makers typi-
cally continue accumulating evidence until a target level of
confidence has been reached was previously shown in the
realm of probabilistic decision-making, where participants
paid a cost to sequentially reveal cues but stopped whenever
the probability of knowing the correct answer rose above a
(participant-specific) threshold (Hausmann-Thiirig & Lége,
2008). Notably, the same behavior held even in a condi-
tion where participants knew that additional cues could not
change the relative rankings of the response options, suggest-
ing that increasing confidence was itself an independent goal.

At the neurobiological level, neural signals reflecting (or
necessary for) confidence accumulation have been identified
during perceptual decisions in parietal (LIP) areas (Kiani &
Shadlen, 2009). The fact that this representation is found dur-
ing the decision period and not (only) afterwards suggests
that confidence is not a post-hoc computation but can be inte-
gral to the choice. The task used by these authors consisted
of a standard “left or right” decision, but to test the effects
of confidence on the choice, it also included a “post-deci-
sion wagering” condition in which monkeys could select a
lower-reward but “sure” offer. The results show that monkeys
indeed choose the sure offer when they are (or should be) less
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confident about the main (“left or right””) choice. While Kiani
and Shadlen appeal to a standard evidence-accumulation
model to explain LIP firings, what they actually use to fit the
behavioral results is an “extension” of evidence accumula-
tion: a model where the standard decision variable is replaced
by the log-odds of a correct decision, which (similar to the
cDDM) is a representation of choice confidence (Kiani &
Shadlen, 2009). This leaves us with the slightly uncomfort-
able situation where the LIP area is responsible for the “left”
versus “right” choice (which is empowered by accumulat-
ing evidence) but some downstream process is necessary to
calculate the log-odds to make the “sure” choice. A more
parsimonious explanation would describe the entire choice
(between the three options) as a confidence accumulation
process, rather than as an accumulation of evidence followed
by a downstream computation of confidence.

Along similar lines, it is possible to reformulate several pre-
vious findings that were initially interpreted as evidence for the
DDM in terms of the cDDM. For example, a study of multi-
alternative choice showed that LIP neuron firing rates gradu-
ally increase over deliberation time in a way the resembles
evidence accumulation in the DDM (Churchland et al., 2008),
which could be difficult to distinguish from confidence accu-
mulation in the cDDM. However, that same study revealed that
the average LIP neuron firing rate after target presentation but
before motion onset is lower for choices between four alterna-
tives compared to those between two alternatives (Churchland
et al., 2008). This is consistent with a neural signal for con-
fidence, since the a priori probability of the correct response
is lower (25% vs. 50%). If the signal was instead monitoring
raw evidence, it should be initialized at the same baseline level
(representing zero evidence before the start of the trial) regard-
less of how many options were available to choose from.

Clearing the Empirical Hurdles

Pleskac and Busemeyer (2010) outlined a number of empiri-
cal findings that they classified as “hurdles” that any com-
plete model of choice confidence should clear. The cDDM
clears seven of the hurdles with no issue. However, we
would like to highlight two specific points.

First, Hurdle 7, where inaccurate responses on easy, time-
pressured trials generally have lower decision time compared
to accurate responses, was not trivial for the cDDM to replicate
(e.g., the diffusion noise parameter had to be increased beyond
the range used to demonstrate the primary model predictions).
We do not consider this to be a major problem, for several rea-
sons. First, this effect has only rarely been reported in prior
studies, so its robustness has not been proven. Second, the effect
applies to only a very limited percentage of trials, for it spe-
cifically addresses inaccurate responses on easy trials. Third,
beyond the fact that this effect is limited to easy trials, it is said
to be most prominent in conditions of time pressure, further
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reducing its general applicability. We note that Ratcliff and
Rouder (1998) demonstrated that the effect (Hurdle 7) could
be replicated by a DDM that includes trial-by-trial variability
in the starting point of the evidence accumulator. While mathe-
matically clever, it is not immediately clear why such variability
should be expected at the cognitive level. Some authors have
speculated that starting point variability could capture potential
residual effects of the evidence accumulation process on pre-
ceding trials (Pleskac & Busemeyer, 2010). Accordingly, if we
were to add a starting point variability parameter on top of the
cDDM as described in this work, the cDDM would also clear
Hurdle 7. Although this seems reasonable, more evidence is
needed before it becomes clear that this is truly something that
all confidence models should consider.

Second, it is worth pointing out that the cDDM inherently
replicates the effect summarized by Hurdle 6 (where inaccurate
responses on difficult trials generally have higher decision time
compared to accurate responses), whereas other models rely on
the inclusion of an additional parameter that introduces vari-
ability into the drift rate (Pleskac & Busemeyer, 2010; Ratcliff
& Rouder, 1998). It is suggested that this variability could cap-
ture potential lapses in attention or memory retrieval (Pleskac &
Busemeyer, 2010). Again, this seems like a reasonable assump-
tion, though perhaps not a mandatory one.

Future Work to Adjudicate between Different
Models

In this theoretical note, we propose an alternate interpreta-
tion of traditional evidence accumulation modes of choice.
However, since the mathematical formulations of both the
c¢DDM and standard DDMs are fundamentally similar, it is
not entirely straightforward to empirically demonstrate the
superiority of one over the other. Nevertheless, we believe
that such an adjudication could be achieved through novel
experiments that test the idea that what is directly monitored
during choice deliberation — and what determines when to
respond — is confidence (as opposed to “evidence”). One
possible way that this could be done would be to train a
decoder to transform EEG or MEG activity, measured at
the time that participants report their confidence ratings, to
readout confidence (across trials). One could then apply the
decoding weights at each time point (within trials) and read
out the theoretical time-varying (within-trial) confidence
dynamics. If this technique works well, one would expect to
find continuous, increasing (perhaps fluctuating) trajectories
across time that might resemble our illustrative examples in
Fig. 5. One could perform a similar analysis based on some
measure of raw evidence rather than confidence and compare
the decoding success, as well as the form of the anticipated
trajectories, across confidence and evidence. In principle,
this method should be able to provide strong evidence for or
against the cDDM relative to the standard DDM.
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Conclusion

In this work, we argue that the deliberation process for
simple types of decisions (such as two-alternative forced
choices based on subjective value) is driven by a confi-
dence monitor rather than a monitor of accumulated evi-
dence in favor of one option over the other. This parsimo-
nious account describes the choice and confidence process
as being tightly linked, and it can account for a wide array
of behavioral and neural phenomena from the literature. It
is also conceptually appropriate for real-world decisions
(rather than externally-assigned laboratory tasks). In real
life, people will need to set their own personal aspiration
levels for choices they make (Simon, 1957). In other words,
when faced with multiple options, people not only need to
decide but they also need to decide when to decide. The
confidence-driven drift-diffusion model (cDDM) that we
present in this work offers a solution for how people sense
the evolution of their confidence across deliberation time
and make their choices in a way that optimizes the tradeoff
between confidence and mental effort (Lee et al., 2023; Lee
& Daunizeau, 2021).

Mmaxl3 = E[Vmaxz‘_;] =My % Cdf( ”2;”3

Appendix A: Formulation of confidence
for multi-option choices

Define choice confidence P, as the probability that the
(predicted) experienced value of the (to-be) chosen option
is higher than that of all the (to-be) unchosen options.
Critically:

P(V, > V,&V, > V) if item#] is chosen
P, =1 P(V, > V&V, > V;) if item#2 is chosen
P(V3 > V,&V3 > V,) if item#3 is chosen

P(V, > max [V,&V;|) if py > max [y, )
=9 P(V, > max |V,&V;|) if u, > max [p;, ps)
P(V3 > max [V,&VZ]) if p3 > max [;41,;42]

where the second set of equations derives from assuming
that the option with the highest expected value will be chosen.
Choice confidence is thus derived from a comparison between
the best option (i.e., the option with the highest expected value
Upesy) and the maximum of the rest of the options. For example,
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for a choice set containing three options, with the first option
having the highest expected value, the expected maximum
value of the other options is (Nadarajah & Kotz, 2008):

Var = M2 (V2, V3) ~ N (B )

max

Hoax = E[max (Vy, V3)] = [ xf(x)ox

F@) ¢ pdf of Vi, = paf (22 ) 5 caf (22

02 %3

)+ par (=2

)eca()

For a choice set with four options, with the first option hav-
ing the highest expected value, an iteration of this procedure
will provide the expected value of the maximum of the options
other than the best:
fer = E[max(max(V,, V;), V,)] = E[max(Vmaw V4>]

The first and second moments of the maximum function can
be calculated iteratively to obtain first the expected maximum

value of two of the three non-best options, then the expected
maximum value of this value and the third non-best option:

Clearly, this iterative process could be repeated indef-
initely, allowing for a choice option set of arbitrarily
large size.

Once the expected maximum value of the non-best
options is determined, the DM will compare this value with
the expected value of the best option. Thus, the decision
variable (DV) will be a normally distributed random variable
with mean equal to the difference of the best and max-non-
best means and variance equal to the sum of the best and
max-non-best variances:

DV ~ N<A/’l’ V Ubestz + Gmaxz)

A
AM = Hpest — Hmax

Subjective uncertainty regarding option values eventu-
ally translates into uncertainty regarding what the "correct
choice" is. This is summarized in terms of the probability P,
of "committing to the correct choice":

P =1—cdfpy,
1

A

,%2 ("beu 24omax? )

Q

1+e

where cdf is the cumulative density function of the cor-
responding normal distribution, evaluated at DV =0, and
the second line derives from a simple sigmoidal approxima-
tion to the normal cumulative density function (Daunizeau,
2017).
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Appendix B: Non-decision time and starting
point bias

In a possible extended version of the model, the cDDM assumes
that during the pre-deliberation NDT, when the options are
being perceived and identified, a low-precision value representa-
tion of the options is automatically formed (Lee et al., 2023; Lee
& Daunizeau, 2021). The brain automatically starts to process
information related to value even when not actively deliberating
about it (i.e., outside of actual decision time) or when prepar-
ing to deliberate about something unrelated (Lebreton et al.,
2009, 2015; Lopez-Persem et al., 2020). For the purposes of
our model and theory, NDT corresponds to the time required for
the perception and identification of the options (we choose not
to consider post-deliberation motor response NDT). Crucially,
the cDDM assumes that during this period, value representations
of the options are formed in parallel to perceptual processes, but
with rather low precision. This is because in this early sensory
processing stage, the options are not yet completely perceived
or identified. This early representation formation can be formal-
ized in the same manner as during explicit deliberation, only
with lower precision (cypy” > 67 e.g., lower attention will be
assigned to the valuation task at this stage):

e ~ PN(yi,o-l%,DT), Vie(l,2),0<t<NDT

At the end of NDT, the decision-maker will have an initial
estimate of the value (v) of each option, as well as an initial
estimate of precision (p) for the value estimates:

0 _ \NDT, ity
W=yl Il Vi e (1,2)

W= vie(1,2)

i
ONpr;

Based on the initial estimate and precision of value for
each option, the decision-maker will already have an initial
sense of confidence by the time deliberation commences.
Thus, whereas the confidence monitor (c) begins the deci-
sion process at zero, it typically arrives at a non-zero point
by the end of the NDT. This effectively creates a starting
point bias (z) equal to the subjective probability that one of
the options is better than the other (i.e., confidence) prior to
explicit deliberation:

z=c"= 2 -1

. e_ﬂ|v<;_vg|/,/3(pL?+pLg>

More generally, both the momentary value estimates and
the momentary confidence level will continue to evolve across
deliberation time. These variables will incorporate both the
information that was automatically processed during NDT and
the information that was deliberately processed after NDT:
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where T is the time index at the moment the choice
response is entered.
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