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Abstract
Assessing our confidence in the choices we make is important to making adaptive decisions, and it is thus no surprise that 
we excel in this ability. However, standard models of decision-making, such as the drift-diffusion model (DDM), treat con-
fidence assessment as a post hoc or parallel process that does not directly influence the choice, which depends only on accu-
mulated evidence. Here, we pursue the alternative hypothesis that what is monitored during a decision is an evolving sense 
of confidence (that the to-be-selected option is the best) rather than raw evidence. Monitoring confidence has the appealing 
consequence that the decision threshold corresponds to a desired level of confidence for the choice, and that confidence 
improvements can be traded off against the resources required to secure them. We show that most previous findings on per-
ceptual and value-based decisions traditionally interpreted from an evidence-accumulation perspective can be explained more 
parsimoniously from our novel confidence-driven perspective. Furthermore, we show that our novel confidence-driven DDM 
(cDDM) naturally generalizes to decisions involving any number of alternative options – which is notoriously not the case 
with traditional DDM or related models. Finally, we discuss future empirical evidence that could be useful in adjudicating 
between these alternatives.

Keywords  Choice · Metacognition · Preferential decision-making · Value-based decision-making

Introduction

As humans, we are able to perform complex behaviors 
empowered by higher order cognitive processes, such as 
judgment and goal-directed decision-making. Beyond this 
ability, we are also able to monitor and assess such cogni-
tive processes as they unfold. Known as metacognition, this 
feature of the human mind allows us to analyze the thoughts 
that we have and adjust them in a controlled manner so as to 
tune our own cognitive performance (Fleming et al., 2012). 
In decision-making, such metacognitive assessment comes 
in the form of choice confidence, or our subjective belief 
that what we chose was indeed the correct (or best available) 

option. Choice confidence is useful in that it can help us 
learn from our mistakes, or avoid a misallocation of scarce 
resources (Yeung & Summerfield, 2012). In decisions where 
there is an objectively correct answer (e.g., perceptual deci-
sions), confidence is highly correlated with objective accu-
racy, although it is not always properly aligned (Fleming & 
Daw, 2017). It has been proposed that different individuals 
have different levels of metacognitive bias (a systematic 
mismatch between confidence and accuracy), metacogni-
tive sensitivity (ability to discriminate between correct and 
incorrect responses based on feelings of confidence), and 
efficiency (sensitivity conditional on performance; Flem-
ing & Lau, 2014). Moreover, in decisions where there is 
no objectively correct answer (e.g., preferential decisions), 
people are nevertheless able to report how confident they 
are about their choices (De Martino et al., 2013). At the 
neural level, various studies have mapped (retrospective 
and prospective) aspects of metacognitive ability to (lat-
eral and medial) prefrontal areas and interoceptive cortices 
(see review in Fleming & Dolan, 2012). Despite the exten-
sive interest and progress in studies of confidence in dif-
ferent domains of decision-making (e.g., perceptual, pref-
erential, economic), there is as of yet no widely accepted 

 *	 Douglas G. Lee 
	 DouglasGLee@gmail.com

1	 Institute of Cognitive Sciences and Technologies, National 
Research Council, Rome, Italy

2	 School of Psychological Sciences, Tel Aviv University, 
Tel Aviv, Israel

3	 Paris Brain Institute (ICM), Paris, France
4	 Translational Neuromodeling Unit (TNU), ETH, Zurich, 

Switzerland

Psychonomic Bulletin & Review (2023) 30:1360–1379 

/ Published online: 14 March 2023

1 3

http://crossmark.crossref.org/dialog/?doi=10.3758/s13423-023-02255-9&domain=pdf
http://orcid.org/0000-0001-5892-8694


Psychonomic Bulletin & Review (2023) 30:1360–1379

computational model that accounts for choice confidence. 
This is especially true in the field of preferential (value-
based) choice, which is our primary interest. We believe that 
an acceptable contender can be generated from the class of 
models known as sequential sampling or accumulation-to-
bound, and we introduce our contender model in this work.

Within the field of decision-making, accumulation-
to-bound models are by far the most common1. Diffusion 
decision models (most notably, the drift-diffusion model or 
DDM) account very well for empirical data across a wide 
variety of domains, including perceptual and value-based 
decision-making (Forstmann et al., 2016). In value-based 
decision-making, the DDM simultaneously explains choice 
accuracy and response time (RT) distributions dependent 
on the relative values of the options that comprise a choice 
set (see review in Ratcliff et al., 2016). The basic premise of 
these models is that upon presentation of the choice options, 
information processing in the decision network of the brain 
provides a signal about which option is more valuable. This 
signal is assumed to represent some “true” value of the 
options, but because there is noise inherent in neural infor-
mation processing, the signal is repeatedly probed until the 
system can reliably declare one option to be more valuable 
than the other. Figure 1 provides a simple illustration of the 
process for an example decision. The core of the DDM is an 
abstract decision variable that represents decision evidence 
(that one option is better than the other) as it accumulates 
across time. Though the evidence that this variable repre-
sents remains abstract in nature, there have been a variety 
of proposals as to what the evidence actually is: a function 
of the likelihood of each alternative response being correct, 
given the sampled information (Edwards, 1965; Laming, 
1968; Stone, 1960); a comparison between sampled informa-
tion and a mental standard (Link & Heath, 1975); a measure 
of strength of match between a memory probe and memory 
traces stored in long-term memory (Ratcliff, 1978); or the 
difference in spike rate between pools of neurons represent-
ing the alternative options (Gold & Shadlen, 2001).

The basic components of the DDM, which relate to the 
accumulated evidence decision variable, are the drift rate or 
the trajectory at which it changes on average (proportional 
to the “true” value difference of the options), the diffusion 
noise parameter by which its trajectory is momentarily 
perturbed (the extent of signal corruption in the system), 
and the evidence threshold the arrival at which triggers a 
choice (the minimum level of evidence required to declare 
that one option is better than the other). It has been proven 
that the DDM can provide the optimal solution to simple 

decision-making problems, where prior beliefs about the 
option values are updated in a Bayesian manner through 
sequential evidence sampling until a choice can confidently 
be made based on posterior value beliefs (Fudenberg et al., 
2018; Tajima et al., 2016). That line of work also shows that 
the optimal DDM decision thresholds should diminish over 
deliberation time2, in any situation where the difficulty of 
the task is not known a priori and where there is some cost 
associated with evidence accumulation (as would be the case 
in most preferential choice contexts; but see Malhotra et al., 
2018, for other scenarios where diminishing bounds might 
not be optimal). As the accumulator is here defined as the 
difference in the posterior estimates of option values, the 
height of the threshold at the time of choice could directly 
provide a measure of choice confidence (i.e., the probability 
that the chosen option was better; Pouget et al., 2016). In 
this case, the collapse of the threshold as time lingers could 
be interpreted as a tradeoff between accepting a lower-than-
desired level of evidence (and, eventually, confidence) about 

Fig. 1   Basic drift-diffusion process illustration. Evidence (verti-
cal axis) for one option versus the other (in a binary choice) evolves 
across time (horizontal axis) until a threshold is reached. The thin 
black line represents the ballistic trajectory, defined by the value of 
option 1 minus the value of option 2, scaled by the drift rate parame-
ter. The purple trace represents the moment-by-moment accumulated 
evidence, which deviates from the ballistic trajectory according to 
random noise with variance set by the diffusion parameter. The blue 
and red lines represent sufficient evidence thresholds for options 1 
and 2, respectively. DDM drift-diffusion model

1  This is particularly true in the domains of perceptual and preferen-
tial decision-making, although it is also becoming more common in 
the domain of economic decision-making.

2  The collapsing threshold is a hallmark of the optimal rendition of 
the DDM, though it is not a feature of the standard DDM. However, 
some non-optimal versions of the DDM have also included collapsing 
thresholds (Voskuilen et al., 2016).
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the choice in exchange for a conservation of deliberation 
resources (e.g., time, metabolites, neural capacity).

One problem with using the threshold height as a direct 
readout of choice confidence is that it does not consider the 
precision of the posterior value estimates. In the basic DDM, 
value estimates are point estimates, and the accumulating 
evidence does not consider the uncertainties of these esti-
mates. A standard measure of uncertainty for (Gaussian) 
probability distributions is the variance of the distribution, 
or its inverse precision. The issue here is that with flat pri-
ors and Bayesian sequential updating, the difference in the 
posterior means of one pair of options could be equivalent 
to that of another pair, while each pair could have a differ-
ent level of precision. For example, the posterior estimates 
of one option pair could have been formed from relatively 
inconsistent evidence samples (i.e., many samples in sup-
port of either option, hence lower-precision posteriors), 
whereas the posterior estimates of the other option pair 
could have been formed from relatively consistent evidence 
samples (i.e., most samples in support of the same option, 
hence higher-precision posteriors; see Fig. 2). In this case, 
both choices might reach the same evidence threshold, but it 
seems intuitive that the option pair with the higher posterior 
precision should correspond to higher choice confidence. In 
fact, under the DDM framework, higher variability in the 
evidence accumulation process causes the process to ter-
minate sooner (on average; see Lee & Usher, 2021), thus 
implying that less precise information would lead to higher 
confidence (because of the collapsing bounds). Using a 
threshold based solely on the value difference of the options 
as a measure of confidence cannot account for a fundamental 
psychological dimension of confidence – people are more 

confident when they decide based on more precise informa-
tion (Lee & Coricelli, 2020; Lee & Daunizeau, 2020, 2021). 
To rectify this, the threshold height at the moment of the 
choice response would need to be transformed as some func-
tion of the precision of the value estimates (e.g., scaled by 
precision and passed through a sigmoidal function) in order 
to calculate confidence. However, although this might solve 
the problem mathematically, it would remain unclear as to 
why the deliberation process would seek a target (threshold) 
that would sometimes end up registering as high confidence 
and sometimes low (setting aside the issue of the eventual 
threshold collapse). More specifically, such an apparatus 
would allow the process to terminate even if the value esti-
mates had very low precision, which would yield a low post 
hoc confidence readout (suggesting that deliberation had 
been terminated prematurely). It is unclear why the deci-
sion apparatus would sometimes make such low confidence 
choices by design. It seems more reasonable to believe that 
the same (initially high) level of confidence would always be 
the default target for similar decisions, and that the threshold 
that terminates the deliberation process should directly take 
into account the precision of the value estimates.

Recent work has attempted to use the DDM to predict 
choice confidence in addition to choice probability and 
RT (Calder-Travis et al., 2020; Drugowitsch et al., 2019; 
Kvam & Pleskac, 2016; Moran et al., 2015; Moreno-Bote, 
2010; Pleskac & Busemeyer, 2010; Yeung & Summerfield, 
2012). However, most such attempts have required addi-
tional assumptions and components on top of the DDM 
itself, which detracts from the elegance of the original 
model and its ability to so reliably account for key decision 
variables. Given the success of the DDM in accounting for 
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Fig. 2   An illustration of how value estimates could have the same 
mean but different precision. Posterior estimates of the difference in 
option values (dV) might have similar means but very different levels 
of precision. The left panel shows sample streams of evidence for two 
different choice trials (one in blue, one in red). Notice that the sam-
ples fluctuate around the same average value, but with more (blue) 

or less (red) variability. The right panel shows what the posterior 
dV estimates for the two trials would look like – both have the same 
mean, but the red estimate has a much higher precision than the blue 
estimate. This higher-precision estimate should instill greater choice 
confidence
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other key aspects of choice (i.e., choice probability and RT), 
and assuming that confidence about a choice is inherently 
linked to those other aspects (Kiani & Shadlen, 2009; Van 
Den Berg et al., 2016), one might conclude that the DDM 
should be able to simultaneously account for all three vari-
ables without the need for any ad hoc features. Calder-Travis 
et al. (2016) conducted a thorough analysis of various sorts 
of DDM found in the literature, specifically focused on their 
ability to predict choice confidence in a variety of datasets. 
However, those authors chose not to perform their model 
comparison while simultaneously accounting for choice, RT, 
and confidence. Furthermore, they only examined data from 
perceptual decision studies, so it is unclear if their findings 
generalize to preferential decisions.

One of the most frequently cited evidence accumula-
tion models of confidence is the two-stage dynamic signal 
detection model (Pleskac & Busemeyer, 2010). As the name 
implies, this model includes two separate (but linked) stages: 
one in which evidence supporting the choice of one option 
versus the other is accumulated until a threshold is reached 
and the choice is made; one in which additional evidence 
that accumulates after the choice is made informs an esti-
mate of confidence about that choice. Thus, confidence 
under this model is calculated only after the choice has been 
finalized, and it critically depends on the assumption that 
additional evidence continues to accumulate (via the same 
accumulator) after the choice response. Van den Berg and 
colleagues used a similar approach, and additionally sug-
gested that confidence could be solicited at different time 
points (Van Den Berg et al., 2016). Those authors relied on 
the assumption that the evidence accumulator variable could 
be queried both at the time that the choice was reported as 
well as after some further delay to explain apparent changes 
of mind (i.e., participants later opted to choose the option 
that they initially rejected) and changes of confidence (i.e., 
participants later opted to choose the same option that they 
initially chose, but with a different level of confidence). This 
study therefore exposed the idea that not only does choice 
evidence accumulate across time, but confidence does as 
well – indeed, they are assumed to be based on the exact 
same accumulator variable. The idea that confidence can be 
monitored across deliberation time was further developed by 
Drugowitsch and colleagues, who suggest that the optimal 
stopping rule (i.e., the location and form of the response 
threshold) was determined by a comparison of the cost of 
continued evidence accumulation and the gain in confidence 
that the decision-maker should expect from continued evi-
dence accumulation (Drugowitsch et al., 2012). While previ-
ous studies such as these already suggested that confidence 
was derived from the same information as the choice itself, 
that it could be queried at any point in time, and that such 
queries should optimally control the decision process (or 
at least its termination), they nevertheless all rely on the 

assumption that both the accumulator variable and the corre-
sponding response thresholds pertain to raw evidence about 
the choice options. Assessments of confidence, accordingly, 
would require that the evidence signal be further processed 
or transformed.

Here, we pursue an alternative hypothesis that the 
response threshold in the DDM should directly represent 
a target level of choice confidence, and thus that the evolv-
ing decision variable should represent the momentary level 
of confidence across time. This idea has qualitatively been 
proposed before as the diminishing criterion model for meta-
cognitive regulation of time investment (Ackerman, 2014). 
In the present work, the decision variable is quantitatively 
defined as a sigmoidal transformation of the absolute dif-
ference in posterior value estimates scaled by the posterior 
precision (i.e., the normative posterior probability that one 
option is better than the other, given the accumulated evi-
dence thus far). Note that this allows for the posterior pre-
cision to be incorporated dynamically throughout decision 
deliberation. The underlying computational architecture 
can be conceptually divided into two modules. One module 
monitors confidence changes and releases response inhi-
bition when a satisficing target confidence level has been 
achieved (see Lee et al., 2023; Lee & Daunizeau, 2021). 
The other module enables the choice response in favor of 
the option deemed to hold the highest value. This seemingly 
superficial modification of the basic DDM has three main 
implications. First, whereas previous models have assumed 
that choice confidence is read out as a transformation of the 
accumulated evidence after the choice has been made, we 
propose that the transformation from evidence to confidence 
occurs during (and is indeed an integral component of) the 
decision process (Drugowitsch et al., 2012; Tajima et al., 
2016). We note that this does not preclude post-decisional 
evidence from being incorporated into post-decisional con-
fidence reports (Desender et al., 2021; Moran et al., 2015; 
Murphy et al., 2015; Navajas et al., 2016; Pleskac & Buse-
meyer, 2010). Second, the ensuing decision process grace-
fully generalizes beyond two-alternative decisions. This is 
because confidence (i.e., the subjective probability that the 
option estimated to be best at any point in time will actually 
yield the highest value) can be derived for any number of 
alternative options (see Appendix A). Third, the process thus 
signals when a choice can be made with a satisfactory level 
of confidence, but it does not directly control which option 
will be selected.

Our formulation addresses a number of known shortcom-
ings of existing sequential sampling models. First, as we 
hinted at above, basic DDMs cannot account for the impact 
of value estimate uncertainty. Decision-makers form not 
only estimates of value for the different options that they 
consider, but also assessments of (un)certainty about those 
value estimates (De Martino et al., 2013; Gwinn & Krajbich, 
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2020; Lee & Coricelli, 2020; Lee & Daunizeau, 2020, 2021; 
Polanía et al., 2019). These feelings of certainty are impor-
tant, because they alter choice behavior (Lee & Coricelli, 
2020; Lee & Daunizeau, 2020, 2021). Most existing ver-
sions of the DDM (or any other sequential sampling model) 
exclude the possibility that option-specific value certainty 
might play a role in the decision process. However, it has 
recently been shown that the DDM indeed provides a better 
explanation of choice data when the drift rate is adjusted to 
reflect the different degree of certainty that the decision-
maker has about the value of each option (Lee & Usher, 
2021). The authors demonstrated that the so-called signal-
to-noise DDM (snDDM) is capable of accounting for the 
positive impact of option-specific value certainty on choice 
consistency and confidence, and the negative impact on 
RT (Lee & Coricelli, 2020; Lee & Daunizeau, 2021). The 
snDDM presents an advance in sequential sampling mod-
els of choice, but it nevertheless relies on evidence sam-
ples drawn from static distributions. Our formulation, on 
the contrary, is driven by value estimates that evolve across 
deliberation. In particular, our formulation fundamentally 
includes an increase in value certainty during choice deliber-
ation, which is consistent with empirical findings that value 
certainty ratings are generally higher after choices compared 
to before (Lee & Coricelli, 2020; Lee & Daunizeau, 2021).

An Illustrative Example of the Confidence‑Driven 
DDM (cDDM)

Our proposed confidence-driven DDM (cDDM) offers 
several advantages over the standard DDM. For one, the 
cDDM could be more easily adapted to decisions between 
any number of options; standard DDMs only apply to binary 
decisions (but see Kvam, 2019). Furthermore, the cDDM 
could be directly applied to potentially any type of deci-
sion without having to adjust the meaning of its compo-
nents or substantially alter its parameters (e.g., perhaps 
the target confidence level for a decision-maker might be 
similar across decision domains, whereas the relative evi-
dence requirements might grossly differ). Finally, from a 
computational perspective, it would seem more useful (or 
parsimonious) for the brain to assess the reliability of the 
relevant information (i.e., confidence about which option 
seems better) as a choice response freely develops, rather 
than simply keeping a tally of how many stochastic samples 
favor each option, stopping when some arbitrary threshold 
has been reached, and only then checking to see how con-
fident it is about the choice that would have already been 
made by that point. Our proposal is in line with previous 
work showing that decision-makers often change their minds 
about which option is better during the course of delibera-
tion, and that such changes of mind coincide with changes 
of confidence (Van Den Berg et al., 2016). Although that 

previous work only focused on changes of confidence that 
occurred between response onset and response termination 
(in that task, participants registered their responses by mov-
ing their hands from the center of the screen to one of the 
four corners), it directly implies that confidence is monitored 
across time for as long as evidence continues to accumulate. 
This suggests that confidence is indeed continuously moni-
tored throughout deliberation, with (usually unobservable) 
changes of mind being triggered whenever confidence (that 
the current to-be chosen option is the best) disappears.

In addition, the cDDM includes a "collapsing bound" 
mechanism, which encourages the decision process to ter-
minate even if the target level of confidence has not yet 
been achieved – and hence to make the choice with a lower 
level of confidence, because further resource expenditure 
(cognitive, metabolic, or other) to increase confidence is 
deemed too costly to continue (see Lee et al., 2023; Lee & 
Daunizeau, 2021). This is analogous to what happens in the 
optimal DDM, where the threshold collapses explicitly due 
to a cost of deliberation that accumulates over time (Fuden-
berg et al., 2018; Tajima et al., 2016; see Malhotra et al., 
2018, for an alternative rationale for collapsing thresholds). 
An alternative (but mathematically similar) perspective is 
that the decision mechanism includes an urgency signal that 
amplifies the incoming decision evidence, which (akin to the 
collapsing bound mechanism) encourages an end to delib-
eration and a final choice response without excessive further 
delay (Churchland et al., 2008; Thura & Cisek, 2014; van 
Maanen et al., 2016).

Thus, the decision process of the cDDM can be summa-
rized as a continuous readout of choice confidence, driven 
by a continuously-updated value signal (both estimate and 
precision for each choice option) towards a predetermined 
target confidence level, which is gradually reduced in con-
sideration of the growing resource expenditure or urgency of 
the decision (see Fig. 3 for an illustrative example).

Model

In this paper, we propose a novel version of the DDM that 
involves only minor alterations to the core mathematics, 
but major alterations to the core conceptual interpretation 
of decision control. Taken together, these alterations allow 
our new cDDM to directly account for choice confidence 
alongside choice consistency and RT, in an integrated man-
ner. Below, we first summarize the standard mathematical 
formulation of the basic DDM, complete with some well-
known optional parameters (starting point bias, non-decision 
time, collapsing bounds). We then describe the alterations 
that distinguish the cDDM from the traditional DDM, as 
well as their contrasting assumptions and interpretations.
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In the basic DDM, the decision deliberation pro-
cess begins with both time and cumulative evidence 
equal to zero. At each time step (t) after the onset of 

deliberation, evidence (e) for each choice alternative 
(i) is drawn from an independent Gaussian distribution 
whose mean (μi) is the true value of the option and 
whose variance (σ2) represents the amount of signal 
corruption due to the inherent stochasticity of neural 
processing (which is the same for all options):

The evidence for each option at each time step is com-
pared and the balance is added to the cumulative total evi-
dence (x) for one option over the other:

The deliberation process proceeds until the accumu-
lated evidence reaches one of two symmetric predeter-
mined threshold bounds (b for option 1, -b for option 2, 
b>0). It is possible to bias the starting point of the process 
(x0) away from zero, but this is arbitrary unless there is 
a good reason to assume that one option is a priori more 
likely to be better (e.g., instruction about or observation 
of an asymmetrical environment during a sequential deci-
sion-making task). It is also possible to include a meas-
ure of non-decision time (NDT) to represent the strictly 
positive time that it takes for the brain to process percep-
tual information while recognizing the options or motor 
control information while entering a response, which is 

ei,t ∼ N
(
�i, �

2
)
,∀ i ∈ {1, 2}

xt = xt−1 + e1,t − e2,t
x0 = 0

Fig. 3   An illustrative example of the confidence-driven drift-diffusion 
model (cDDM) process. The blue trace illustrates the evolution of 
choice confidence across response time (RT). At t = 0, the options are 
unknown, and thus confidence = 0. Momentary precision-weighted 
value evidence drives confidence until it reaches a threshold and a 
choice is made. Note that the target confidence threshold collapses 
over time, as the decision-maker recognizes the importance of con-
serving resources (e.g., time and cognitive effort) rather than continu-
ing to increase confidence

Fig. 4   Simulated drift-diffusion model (DDM) trials. An illustrative 
example of five simulated trials of varying value difference (dV), 
based on a basic DDM with collapsing bounds. Each colored curve 
represents one trial. The left plot shows the accumulation of evidence 

across time, where each process terminates upon reaching one of the 
bounds. The right plot shows how the evolution of confidence would 
look if it were a moment-by-moment sigmoidal transformation of the 
cumulative evidence
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simply added to deliberation time (DT) to calculate total 
RT.3 As mentioned above, one possible way to map from 
evidence to confidence in the traditional DDM would be 
to pass it through a sigmoidal transformation. Figure 4 
illustrates simulated evidence accumulation, and the cor-
responding confidence transformation, for 100 trials of 
varying difficulty (i.e., unsigned value difference between 
the options).

In the cDDM, the momentary variable that is monitored 
is not merely a relative value signal for the options (as in the 
basic DDM), but rather an assessment of confidence (ct) that 
considers both the momentary value estimates of each option 
(vi,t) and the momentary precision of those value estimates 
(pi,t), passed through a sigmoidal transformation to compute 
the probability that one option is better than the other:

ei,t ∼ N
(
�i, �

2 + �2

i

)
,∀ i ∈ {1, 2}

 

1)	
vi,t =

∑t

T=1

ei,T

t
,∀ i ∈ {1, 2}

vi,0 = 0,∀i ∈ {1, 2}
  

2)	 pi,t =
t

�2

i

,∀ i ∈ {1, 2}  
3)	 ct =

2

1+e
−�|v1,t−v2,t|∕

√
3

(
1

p1,t
+

1
p2,t

) − 1

where now each option has its own specific evidence vari-
ance term (σ2

i) in addition to the generic processing noise 
(σ2) and the �√

3
 term in the confidence equation derives from 

a moment-matching approximation to the Gaussian cumula-
tive density function (Daunizeau, 2017). Anecdotally here, 
the standard sigmoid (logistic) function undergoes an affine 
transformation to ensure that the confidence readout falls 
within the range [0,1), with 1 indicating maximal confidence 
about knowing which option is correct and 0 indicating a 
complete lack of confidence. Equation 1 defines the momen-
tary value estimate of each option at each point in time (vi,t) 
as the average of all evidence samples collected up until that 
time point. Equation 2 defines the momentary precision of 
each value estimate at each point in time (pi,t) as the sum of 
the precision of all evidence samples collected up until that 
time point. Finally, Equation 3 defines the assessment of 
confidence (ct), which is the key novel quantity that we intro-
duce in the cDDM. This is defined as (an affine transforma-
tion of an approximation of) the cumulative density function 
of a Gaussian whose mean is the unsigned difference in the 
option value estimates and whose variance is the sum of the 
variance terms for each estimate. Confidence is thus defined 
as the probability that the options do not have the same value 

(where another part of the system keeps track of which 
option has the higher value estimate). Note that the evidence 
(e) that lies at the core of the process is the same as in the 
standard DDM, namely momentary signals about the rela-
tive values of the choice options (e.g., neural firing rates in 
pools of neurons representing either option). This enables a 
direct comparison between the standard DDM and the 
cDDM, in terms of numerical simulations. Note that the 
update of the sufficient statistics of value representations can 
be described in two distinct manners, including as a Markov 
decision process (which involves simple difference 
equations).

The decision process will continue to step forward in 
time and acquire additional samples of value evidence until 
confidence reaches the boundary (b) representing a prede-
termined target confidence level. The final inferred values 
of the options will be vi

τ, where τ is the time at which the 
process terminated. The choice will be implemented in favor 
of whichever option corresponds to the highest value of vi

τ 
(i.e., response inhibition will be released when the confi-
dence threshold is crossed, allowing the strongest value 
signal at that point to drive the decision-maker’s response 
behavior). Figure 5 illustrates simulated confidence accumu-
lation, and the corresponding value estimate refinement, for 
100 trials of varying difficulty.

Results

Although we present the cDDM here as a theoretical 
model, it is nevertheless important for us to demonstrate 
that it is able to account for certain relevant findings previ-
ously reported in the literature. To permit this, we simu-
lated data under the cDDM. Specifically, we created 
100,000 trials each with two options whose means were 
independently drawn from a uniform (0,1) distribution and 
whose standard deviations were independently drawn from 
a uniform (1,2) distribution. To prevent outlier trials with 
excessively long RTs, we arbitrarily set a maximum RT at 
10,000 time steps (t) at which point the accumulation pro-
cess would stop regardless of the current state of confi-
dence. We arbitrarily set the shape of the response thresh-
old (t = 0:10,000) according to the formula: 1

1+e
t−5000
1000

 . This 

established an initial (t = 0) target confidence of approxi-
mately 1, which gradually decayed with a rate that is at 
first increasing, then decreasing in approach of a target 
confidence of approximately 0 at t = 10,000. For the free 

3  For our purposes here, we will not consider non-essential param-
eters such as x0 and NDT. For a possible extension of our model that 
might relate to x0 and NDT, see Appendix B.
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parameters for the rate of evidence accumulation and the 
degree of neural processing noise, we manually selected 
parameters a value of 0.1 and 6, respectively, which 
seemed to produce output (choice probability, RT, and 
confidence) that reasonably resembled previously-pub-
lished empirical data in terms of the observed range of 
each variable and the qualitative relationships between the 
variables. Varying the choice of parameters beyond a cer-
tain range could alter the qualitative nature of the simu-
lated output. However, as the purpose of this theoretical 
study is merely to demonstrate the workings of the cDDM 
and its ability to qualitatively account for empirical find-
ings, not to formally fit or quantitatively compare models, 
a proper formal parameter sensitivity analysis is beyond 
the scope of this work. As we present below, the cDDM 
can qualitatively reproduce a wide range of findings using 
a consistent set of parameters.

To simulate the cDDM process, each trial started with 
time, value estimates and precision for each option, and 
confidence all reset to zero. At each time step, a random 
sample of evidence was drawn for each option, which was 
scaled by the drift rate. The value estimate of each option 
was updated in a Bayesian manner, with the new evidence 
and already incorporated evidence scaled by their relative 
precisions before being summed together. The value preci-
sion for each option was updated as the previous level of 
precision plus the precision of the new evidence. Momentary 
confidence was calculated based on the momentary value 
estimates and precision, and the process terminated when 
confidence reached the threshold.

The most common behavioral findings, reported in a 
number of previous studies, are the general relationships 
between choice difficulty (inversely quantified as the dif-
ference in the choice option values as subjectively rated in 
a separate task, or dV), RT, and choice confidence. Fig-
ure 6 presents these patterns as exemplified in data pooled 
together from three different studies (Lee & Coricelli, 
2020; Lee & Daunizeau, 2020, 2021), alongside the pat-
terns present in data simulated under the cDDM (where dV 
indicates the true latent value difference of the options on 
each trial). The cross-participant mean correlations between 
dV and RT (see Fig. 6A), between dV and confidence (see 
Fig. 6B), and between RT and confidence (see Fig. 6C) in 
the empirical data are -0.22 (p < .001), 0.31 (p < .001), and 
-0.30 (p < .001), respectively. In the exemplary set of cDDM 
parameters, the correlations are -0.75, 0.72, and -0.98 (see 
Figs. 6D–F). Note that without even needing to perform 
quantitative model fitting, it is evident that the cDDM quali-
tatively reproduces the same patterns found in the empirical 
data. The weaker correlations in the empirical data relative 
to the simulated data are expected due to additional sources 
of noise that are outside the scope of the model. Further-
more, the cDDM cannot reproduce the stochasticity in the 
empirical relationship between RT and confidence because 
that relationship is explicitly defined in the model formula-
tion (see Fig. 6F). The origin of these relationships under the 
cDDM can be summarized as follows. Trials with lower dV 
will take longer to muster confidence, through either preci-
sion gain or estimate revision (thus, the negative relationship 
between dV and RT). These trials will reach the collapsing 

Fig. 5   Simulated confidence-driven drift-diffusion model (cDDM) 
trials. An illustrative example of five simulated trials of varying value 
difference (dV), based on the cDDM. Each colored curve represents 
one trial. The left plot shows the evolution of confidence across time, 

where each process terminates upon reaching the bound. The right 
plot shows how the evolution of estimated value difference would 
look if it were to be extracted from the confidence signal
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confidence threshold at a later point in time on average (thus, 
the positive relationship between dV and confidence). The 
negative relationship between RT and confidence is by con-
struct, because the confidence threshold collapses across 
deliberation time.

The three-way relationship between choice probability, 
response time, and choice confidence was summarized in 
a convenient format by de Martino et al. (2013). Specifi-
cally, the authors showed that choices were more consistent 
with subjective value ratings when participants were more 
confident about those choices, resulting in higher logistic 
regression slope parameters for more confident choices. 
They also showed that more difficult choices (i.e., lower 
dV) corresponded to longer deliberation (i.e., higher RT), 
and that more confident choices were made more quickly, 
even when accounting for difficulty level. We replicated 
those findings using the pooled data from the studies men-
tioned above (Lee & Coricelli, 2020; Lee & Daunizeau, 
2020, 2021). In this empirical data, the cross-participant 
mean logistic slopes for low and high confidence trials were 
6.6 and 15.0, respectively (difference in slopes = 8.4, p < 
.001; Figs. 7A,B). Cross-participant mean RT for low dV 
/ low confidence trials was greater than for high dV / low 
confidence trials (0.27s, p < .001), as well as for low dV / 
high confidence trials (0.49s, p < .001). Cross-participant 

mean RT for high dV / high confidence trials was lesser 
than for low dV / high confidence trials (0.35s, p < .001), 
as well as for high dV / low confidence trials (0.57s, p < 
.001). We also replicated the same findings in data simulated 
under the cDDM (Fig. 7). The observation that choices are 
more consistent with value ratings on trials that had higher 
confidence can simply be explained by the fact that most 
high-confidence trials are easy (i.e., high value difference) 
and most low-confidence trials are difficult (i.e., low value 
difference). The three-way relationship between dV, confi-
dence, and RT is more interesting. Under the cDDM, even 
when controlling for dV, trials will randomly vary in terms 
of how much congruent versus incongruent information is 
processed (i.e., how the trial-specific random information 
samples help or hinder momentary confidence). Some trials 
will benefit from more information earlier during delibera-
tion, and thus terminate with higher confidence and lower 
RT. Other trials will not receive the same benefit, and thus 
terminate with lower confidence and higher RT.

Another interesting finding reported in the literature is 
the observation that choice confidence increases with the 
value difference of the options (dV) for correct choices, but 
confidence decreases with dV for error choices. This was 
demonstrated in rats, which signaled their choice confidence 
by how long they were willing to wait in anticipation of their 

Fig. 6   Relationships between choice ease, response time (RT), and 
choice confidence. In experimental data pooled together from three 
previous studies (n = 155), RT decreases with choice ease (unsigned 
value difference or dV; panel A), confidence increases with dV (panel 
B), and RT and confidence are negatively correlated (panel C). Each 

blue dot represents one trial; green curves show the means across 
equally spaced dV bins. The same patterns were present in data simu-
lated under the confidence-driven drift-diffusion model (cDDM; pan-
els D–F)
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predicted reward in an olfactory discrimination task (Kepecs 
et al., 2008). It turns out that this pattern is also observable 
in the behavioral data from the studies mentioned above (Lee 
& Coricelli, 2020; Lee & Daunizeau, 2020, 2021), although 
it was not previously reported. Across participants, the mean 
correlation between dV and confidence for consistent and 

trials was 0.37 (p < .001), and the mean correlation between 
dV and confidence for inconsistent trials was -0.10 (p < 
.001; Fig. 8). Data simulated under the cDDM also exhibit 
this pattern (correlation for consistent trials = 0.71, correla-
tion for inconsistent trials = -0.09; Fig. 8). Importantly, the 
same exact simulated data (in particular, the same generating 

Fig. 7   Confidence corresponds to greater choice consistency and 
lower response time (RT). In experimental data pooled together 
from three previous studies (n = 155), choices are more consistent 
with value ratings on high versus low confidence trials (panels A 
and B, blue vs. red; median split on confidence, within participants). 
Responses are faster for high versus low dV trials (median split on 

dV, within participants), as well as for high versus low confidence tri-
als within both high and low dV trials (median split on confidence 
within median split on dV, within participants; panel C). The same 
patterns were present in data simulated under the confidence-driven 
drift-diffusion model (cDDM; panels D–F)

Fig. 8   The relationship between choice ease and choice confidence 
is different for consistent and inconsistent trials. In experimental data 
pooled together from three previous studies (n = 155), confidence 
increases with choice ease (unsigned value difference or dV) for 
consistent trials (where the chosen option aligns with value ratings; 

panel A in blue) but decreases with dV for inconsistent trials (panel 
A in red). Each dot represents one trial; curves show the means across 
equally-spaced dV bins. The same patterns were present in data sim-
ulated under the confidence-driven drift-diffusion model (cDDM; 
panel B)
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parameters) were used to create all the plots in Figs. 6, 7, 
and 8. This effect arises under the cDDM because inaccurate 
responses are caused entirely by noise that pulls the accumu-
lator away from its pure (i.e., noise-free) ballistic trajectory. 
Such noise delays the choice response (in contrast to noise 
that pushes the accumulator towards an accurate response, 
which hastens the choice response). Therefore, the average 
response time for inaccurate trials will be longer than for 
accurate trials. Because the cDDM includes a confidence 
threshold that collapses over time, inaccurate trials will (on 
average) conclude with lower levels of confidence than accu-
rate trials.

Empirical Hurdles for Confidence Models to Explain

The literature on choice confidence has exposed a variety of 
different empirical findings. Many of these findings are so 
robust that it has been proposed that any worthy model of 
confidence should be able to account for them (Pleskac & 
Busemeyer, 2010). We here put the cDDM to the test and 
note that it predominantly passes these hurdles:

1.	 Speed-accuracy trade-off. It has long been known that 
decision time and accuracy are positively correlated, 
in the sense that participants respond more accurately 
(on average) when they are allowed to or otherwise 
choose to take more time before reporting their choices. 
Within the accumulation-to-bound framework, this is 
typically enabled by allowing the response boundary to 
vary across conditions: contexts where fast decisions are 
required or encouraged impel participants to set lower 
response boundaries compared to those in contexts 
where accurate decisions are encouraged. The cDDM is 
a specific instance of the accumulation-to-bound frame-
work and is thus able to account for this speed-accuracy 
trade-off effect. Note, however, that this hurdle describes 
comparisons across different choice contexts. Within a 
given context, both the basic DDM and the cDDM will 
predict the opposite pattern (i.e., longer average delib-
eration time should correspond to lower average accu-
racy).

2.	 Positive relationship between confidence and stimulus 
discriminability. It has also long been known that con-
fidence is positively correlated with stimulus discrimi-
nability (e.g., the difference in subjective value ratings 
between options in a value-based decision). Under 
the cDDM, confidence is defined as a monotonically-
increasing function of value difference. Thus, while 
sampling stochasticity will lead to trial-by-trial varia-
tions in confidence levels at the time of choice, there will 
always be a positive correlation (across trials) between 
value difference and confidence.

3.	 Resolution of confidence. Choice accuracy and con-
fidence are both increasing functions of stimulus dis-
criminability, otherwise referred to as choice ease. It is 
therefore not surprising that accuracy and confidence are 
themselves positively correlated. However, the positive 
relationship between accuracy and confidence typically 
remains even after controlling for choice ease/difficulty. 
In essence, this means that for a fixed difficulty level, 
participants report greater confidence for choices that 
turned out to be accurate than for choices that turned 
out to be inaccurate. We verified this via simulation (see 
Fig. 8).

4.	 Negative relationship between confidence and decision 
time. There is typically a strong relationship between 
decision time and confidence, where slower decisions 
are generally associated with lower confidence. This 
effect is fundamental to the cDDM, where the confi-
dence threshold (i.e., the boundary representing the 
momentary target confidence level at which a response 
will be made) decreases across decision time.

5.	 Positive relationship between confidence and decision 
time. Participants report higher levels of confidence (on 
average) during experimental conditions where they 
are either allowed or encouraged to take more time 
to deliberate before entering their choice responses. 
Under the cDDM, momentary confidence levels (dur-
ing deliberation, prior to response) generally increases 
with decision time, as considering more information 
samples leads to higher-precision value estimates and 
thus higher choice confidence. The cDDM assumes that 
decision-makers will continue to deliberate until their 
confidence reaches a threshold level. However, if one 
were to relax this assumption and force participants to 
respond early (as is done in so-called interrogation para-
digms), it should be clear that average confidence levels 
will be greater when participants are allowed more time 
before responding. Alternatively, if one were to retain 
the threshold feature of the cDDM and merely encour-
age shorter or longer deliberation times (as is done in 
speed vs. accuracy optional stopping paradigms), it 
would also be the case that the slower conditions (i.e., 
those where accuracy was encouraged) would gener-
ally lead to greater confidence as compared to the faster 
conditions (i.e., those where speed was encouraged), as 
participants would utilize higher response thresholds in 
the former.

6.	 Slow errors. Average decision times are typically longer 
for inaccurate versus accurate responses. As explained in 
point 3 above, the cDDM yields this pattern of results, 
which we also confirmed via simulation (see Online 
Supplementary Material (OSM)).
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7.	 Fast errors. Certain previous studies demonstrated that 
average decision times are shorter for inaccurate ver-
sus accurate responses when the choice difficulty is low 
and particularly when speedy responses are encouraged. 
Using simulation analysis, we found that the cDDM 
can recreate this pattern (see OSM). However, we note 
that recreating this pattern while simulating the cDDM 
required setting the diffusion noise parameter higher 
than that used to demonstrate the other results reported 
in this study.

8.	 Increased resolution in confidence with time pressure. 
Under conditions of time pressure, it seems that there 
is an increase in the resolution of confidence (see point 
3 above). In essence, this means that there will be a 
larger gap between the average confidence reported for 
accurate versus inaccurate responses when participants 
are required or encouraged to decide more quickly. The 
cDDM can recreate this effect by increasing the rate at 
which the confidence threshold collapses when decision-
makers are in situations where they would feel pressure 
to respond more quickly. We verified this via simulation 
(see OSM).

Discussion

It is widely assumed that decision-making consists of an 
accumulation-to-bound process, during which decision evi-
dence (that one option is better than the other) is accumu-
lated over time until a threshold is met (Gold & Shadlen, 
2007). This hypothesis is implicit in many mainstream mod-
els of decision-making and in particular the DDM, which 
has been highly successful in explaining choice and reaction 
time data across a very large number of studies (Ratcliff 
et al., 2016) but which requires additional assumptions to 
be able to simultaneously explain choice confidence. An 
alternative suggestion is that the brain uses a multiplica-
tive urgency signal4 that encourages an end to deliberation 
and a final choice response without excessive further delay 
(Churchland et al., 2008; Thura & Cisek, 2014; van Maanen 
et al., 2016). Computational models have been proposed in 
which the evidence accumulator is amplified at a rate that 
increases across time, representing the urgency signal (Cisek 
et al., 2009; Ditterich, 2006). In the DDM, an amplified drift 
rate is mathematically equivalent to a diminished threshold 
(if the noise term is adjusted accordingly), so the purported 

urgency signal might be functionally identical to the col-
lapsing bound in the optimal DDM. In any case, neither of 
these models considers online (intra-decision) confidence 
monitoring to be instrumental to triggering a choice.

Here, we advance the alternative hypothesis that what is 
monitored during a decision is the momentary level of con-
fidence across time and that the decision threshold thus cor-
responds to a target level of choice confidence. This proposal 
is related to that of Lee and Daunizeau (2021), which argued 
that deliberation time optimizes a form of effort-confidence 
tradeoff, whereby decision-makers will choose to invest time 
when they expect to achieve a confidence gain that exceeds 
the anticipated cost of deliberation effort. Here, confidence 
is used primarily in a prospective manner, in the sense that 
the decision control system sets the target confidence level 
based on early (pre-deliberation) value representations, and 
ignores incoming information obtained during deliberation. 
In contrast, the cDDM model is reactive: incremental mental 
effort accumulates evidence that drives (partially stochas-
tic) changes in confidence until it eventually reaches a pre-
defined threshold, which terminates the process and triggers 
a choice. Both perspectives share the notion that by investing 
deliberation time, one should expect to achieve higher confi-
dence than would be achieved by choosing prematurely (see 
also Chaiken et al., 1989). A related idea has been proposed 
in the realm of risky choice (Navarro-Martinez et al., 2018). 
Here, evidence samples based on probabilistic utility func-
tions serve as input into a t-test calculation (mean / standard 
error of the mean) and the decision-maker stops deliber-
ating when the t-score reaches a target confidence level. 
This work was preceded by theoretical studies of percep-
tual choice demonstrating that optimal decision thresholds 
should depend on confidence (Drugowitsch et al., 2012). 
Importantly, the latter model is both prospective (decision 
thresholds rely on anticipated confidence gains) and reac-
tive (confidence is updated across deliberation time with 
respect to current levels of accumulated evidence). How-
ever, the validity of these decision control models relies on 
two potentially limiting assumptions: (i) the mechanism by 
which accumulated evidence changes value representations 
is known by the system that controls decisions; and (ii) only 
two options need to be compared.

With the cDDM, we relax these assumptions and sug-
gest that there exists a central confidence-monitoring system 
in the brain that performs a similar function across a wide 
variety of decisions. This system effectively decides when to 
decide and is agnostic about the details of the actual decision 
about to be implemented. Importantly, this unique confi-
dence system would not need to consider specific knowledge 
about upstream evidence accumulation processes or down-
stream decision steps (i.e., the choice declaration or imple-
mentation), allowing it to perform its duty irrespective of the 
current choice context. The medial prefrontal cortex (mPFC) 

4  Urgency signals are typically presented with respect to time specifi-
cally, where responses are made sooner in order to save time. Rising 
deliberation costs and urgency are not mutually exclusive, and in fact 
the latter can be considered a special case of the former. Furthermore, 
one could monitor both time urgency and other costs of deliberation 
and diminish the confidence threshold in response to either or both.
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has been suggested as such a confidence-monitoring brain 
region, as fMRI activation represented confidence scores 
across a variety of value-based tasks (Clairis & Pessiglione, 
2022). Response confidence is also tracked by the ventro-
medial prefrontal cortex (vmPFC) and a prefronto-parietal 
network, similarly for both memory-based and perceptual 
decisions (Rouault et al., 2021). Furthermore, neural firing 
rates in the rat orbitofrontal cortex (OFC) track confidence 
during olfactory discrimination (Kepecs et al., 2008). Under 
the cDDM, the cessation of deliberation would be influ-
enced not only by confidence accumulation, but also by the 
rate at which the response threshold collapses. A separate 
brain region might thus monitor the investment of cognitive 
effort, with the dorsomedial prefrontal cortex (dmPFC) hav-
ing been suggested as a potential candidate region (Clairis 
& Pessiglione, 2022). The interplay between these regions 
would thus control the dynamics of an effort-confidence 
tradeoff in deciding when to decide (Lee et al., 2023; Lee & 
Daunizeau, 2021).

We argue that the novel "confidence accumulation" pro-
posal has computational advantages over the standard "evi-
dence accumulation" point of view, and that it permits us 
to recast several existing empirical findings in novel terms. 
Furthermore, our approach allows us to make some novel 
empirical predictions, which we discuss below.

Computational Advantages of the cDDM

From a computational perspective, one may ask, "What is 
more worthwhile to accumulate in diffusion decision mod-
els: evidence or confidence"? Accumulating confidence 
rather than evidence entails three main computational 
advantages.

First, the cDDM includes a built-in mechanism that per-
mits accounting for not only the evolving balance of evi-
dence about the values of the different options, but also a 
measure of certainty about those values. This allows for a 
more direct readout of confidence at the time a choice is 
made, relative to the basic DDM (which ignores the concept 
of value certainty), by taking into account the precision of 
the posterior value estimates. Moreover, it also allows for a 
direct readout of confidence at any time prior to the choice 
response (i.e., during deliberation). Thus, the decision appa-
ratus can distinguish from situations where the instantaneous 
balance of evidence is equal but the precision of that evi-
dence differs, which would allow for the system to optimally 
determine whether it should continue to deliberate or not. 
Specifically, in situations where the accumulating evidence 
has lower precision, deliberation should persist for longer 
(cf. Lee & Usher, 2021). This feature is shared with the 
model of Drugowitsch and colleagues (Drugowitsch et al., 
2012), which is also controlled by a moment-by-moment 
assessments of confidence.

Second, a decision mechanism that accumulates con-
fidence (like the cDDM) generalizes more easily to deci-
sions between any number of options, compared to one that 
accumulates evidence (like the basic DDM). The DDM 
was originally conceived to model decisions between two 
alternatives. While it could be extended to account for 
decisions between multiple alternatives, such an extension 
would require introducing multiple decision variables, which 
might become implausible as the computational cost would 
increase exponentially with the number of choice options 
(Churchland et al., 2008; Roxin, 2019). Additionally, this 
would be computationally expensive, as it would require 
keeping track of the momentary rankings across options. 
On the contrary, the cDDM can model multi-alternative 
choices using a single compound decision variable that 
tracks the difference between the posterior probabilities of 
the best option and all of the other options (see Appendix 
A). As such, the cDDM can handle arbitrarily-large choice 
sets without adding much complexity to the computations 
involved. This is crucial to the extent that real-life decisions 
typically involve more than two choice options (in contrast 
to contrived laboratory decisions).

Finally, specific settings of the cDDM will yield decisions 
that optimally trade off confidence gain (towards the target 
level) and effort (to increase confidence). This has many impli-
cations. First, consider situations where an excessive amount 
of time is required to increase confidence or when time is laps-
ing without any increase in confidence: it may then be better 
to decide immediately (even randomly) rather than to spend 
additional time deliberating. To afford this optimal cost-benefit 
tradeoff, the brain needs to be able to prospectively anticipate 
the confidence gain it could achieve by investing additional 
deliberation time. In the DDM framework, it can be shown 
that achieving such optimal decision times eventually implies 
setting a threshold that collapses with a rate that increases with 
the cost of deliberation time (Fudenberg et al., 2018; Tajima 
et al., 2016). This directly applies to the cDDM. Importantly, 
however, the establishment of this optimal decaying threshold 
relies upon restrictive assumptions regarding how evidence 
is used to modify uncertain value representations, which 
enable the prospective evaluation of the costs and benefits 
of waiting versus deciding now (Drugowitsch et al., 2012). 
In particular, these assumptions include the notion that evi-
dence is itself assimilated in an optimal (Bayesian) manner, 
which neglects systematic errors such as confirmation and/or 
optimism biases (Kappes et al., 2020; Rollwage et al., 2020; 
Sharot, 2011) or asymmetries in the impact of evidence for 
default versus alternative options (Feltgen & Daunizeau, 2021; 
Lopez-Persem et al., 2016). Under this view, optimal decision 
timing requires specific decision control systems that cannot 
generalize to different types of decisions. Nevertheless, one 
can relax these assumptions by simply considering that the 
potential magnitude of the cumulative (random) perturbations 
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of value representations will increase with decision time (Lee 
& Daunizeau, 2021). This would endow the cDDM with a pro-
spective threshold-setting mechanism without committing to 
detailed assumptions regarding evidence assimilation. In turn, 
the same decision control system (extended cDDM) would 
strike at a cost-benefit balance that generalizes over decision 
types.

Second, consider situations in which decision-relevant 
information processing can be accelerated, for example, by 
investing more attentional and/or mnesic resources. This 
implies that both speed and accuracy can be increased, at the 
cost of intensifying mental effort. This can be achieved if the 
brain monitors another variable throughout the deliberation 
process: a resource expenditure monitor5 that represents the 
total amount of cognitive resources that have been invested 
in the current decision across time. As resource expenditure 
approaches some critical level, where the anticipated benefit 
of further expenditure diminishes towards the anticipated 
cost, this signal would encourage the decision process to 
terminate even if the target level of confidence were not yet 
achieved (Zenon et al., 2019; see Shenhav et al., 2017, for a 
review). The ensuing effort-confidence tradeoff would thus 
modulate optimal decision times with respect to the neu-
rocognitive demands of the decision task. More precisely, 
optimal decision times would now depend upon the relative 
costs of effort duration and intensity.

Reinterpreting Empirical Findings through the Lens 
of the cDDM

Whether confidence is monitored during (or in parallel with) 
a choice or after it has been the object of a longstanding 
debate (Fleming & Daw, 2017). However, many recent stud-
ies suggest that confidence judgments influence the develop-
ment of choice responses rather than just being post-hoc read-
outs (Schulz et al., 2021). For example, people who already 
feel confident about their choice after accumulating a certain 
amount of evidence do not accumulate additional evidence 
(or they process only choice-congruent information from that 
point forward; Rollwage et al., 2020). Furthermore, differ-
ent people have different rates of urgency during a choice 
(which can equivalently be interpreted as having different 
rates of threshold collapse, meaning that they are more or 
less willing to accept lower confidence in exchange for sav-
ing effort; Hauser et al., 2017). All these studies (and others) 
suggest that the monitoring of confidence is an integral part 

of the decision process and influences it in real time. One 
possible way to conceptualize these findings is that the deci-
sion process consists of two parallel processes: an evidence 
accumulation process that is responsible for the choice and 
a confidence monitoring process (carried out with a slight 
delay, since it needs to take as input the momentary state of 
evidence accumulation) that can influence the evidence accu-
mulation (e.g., by setting collapsing bounds). But another 
possibility is encapsulated by our cDDM model, which sim-
ply proposes that decision-making control only requires a 
single (confidence accumulation) process.

Beyond real-time confidence monitoring, there is already 
some strong evidence that people explicitly use confidence 
to control the speed-accuracy trade-off for their choices. In 
a recent study, participants were asked to make their choices 
(distinguish between Gabor patches of different orientations) 
such that they would expect to achieve 70%, 85%, or 90% 
accuracy across trials (Balsdon et al., 2020). Participants 
were indeed able to tune their behavior in this way, decreas-
ing RT for lower target confidence and increasing RT for 
higher target confidence, with subjective confidence levels 
aligning with objective accuracy percentages. Furthermore, 
when allowed to respond without any externally-imposed 
confidence target, participants generally stopped accumulat-
ing evidence much earlier and achieved accuracy/confidence 
levels that were lower than what they were demonstrably 
capable of (in the high target confidence condition). At the 
very least, this supports the claim that decision-makers trade 
confidence against the cost of deliberation time, which is 
consistent with the cDDM framework. Additional empirical 
evidence in support of the notion that decision-makers typi-
cally continue accumulating evidence until a target level of 
confidence has been reached was previously shown in the 
realm of probabilistic decision-making, where participants 
paid a cost to sequentially reveal cues but stopped whenever 
the probability of knowing the correct answer rose above a 
(participant-specific) threshold (Hausmann-Thürig & Läge, 
2008). Notably, the same behavior held even in a condi-
tion where participants knew that additional cues could not 
change the relative rankings of the response options, suggest-
ing that increasing confidence was itself an independent goal.

At the neurobiological level, neural signals reflecting (or 
necessary for) confidence accumulation have been identified 
during perceptual decisions in parietal (LIP) areas (Kiani & 
Shadlen, 2009). The fact that this representation is found dur-
ing the decision period and not (only) afterwards suggests 
that confidence is not a post-hoc computation but can be inte-
gral to the choice. The task used by these authors consisted 
of a standard “left or right” decision, but to test the effects 
of confidence on the choice, it also included a “post-deci-
sion wagering” condition in which monkeys could select a 
lower-reward but “sure” offer. The results show that monkeys 
indeed choose the sure offer when they are (or should be) less 

5  There is debate about what resources are consumed in a costly 
manner during cognitive processes, including metabolites, time, or 
capacity (Zenon et al., 2019; see Shenhav et al., 2017, for a review). 
For our purposes, we remain ambivalent and use the term resources 
in a more abstract sense (i.e., whatever the true costly resource turns 
out to be, our model will not change).
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confident about the main (“left or right”) choice. While Kiani 
and Shadlen appeal to a standard evidence-accumulation 
model to explain LIP firings, what they actually use to fit the 
behavioral results is an “extension” of evidence accumula-
tion: a model where the standard decision variable is replaced 
by the log-odds of a correct decision, which (similar to the 
cDDM) is a representation of choice confidence (Kiani & 
Shadlen, 2009). This leaves us with the slightly uncomfort-
able situation where the LIP area is responsible for the “left” 
versus “right” choice (which is empowered by accumulat-
ing evidence) but some downstream process is necessary to 
calculate the log-odds to make the “sure” choice. A more 
parsimonious explanation would describe the entire choice 
(between the three options) as a confidence accumulation 
process, rather than as an accumulation of evidence followed 
by a downstream computation of confidence.

Along similar lines, it is possible to reformulate several pre-
vious findings that were initially interpreted as evidence for the 
DDM in terms of the cDDM. For example, a study of multi-
alternative choice showed that LIP neuron firing rates gradu-
ally increase over deliberation time in a way the resembles 
evidence accumulation in the DDM (Churchland et al., 2008), 
which could be difficult to distinguish from confidence accu-
mulation in the cDDM. However, that same study revealed that 
the average LIP neuron firing rate after target presentation but 
before motion onset is lower for choices between four alterna-
tives compared to those between two alternatives (Churchland 
et al., 2008). This is consistent with a neural signal for con-
fidence, since the a priori probability of the correct response 
is lower (25% vs. 50%). If the signal was instead monitoring 
raw evidence, it should be initialized at the same baseline level 
(representing zero evidence before the start of the trial) regard-
less of how many options were available to choose from.

Clearing the Empirical Hurdles

Pleskac and Busemeyer (2010) outlined a number of empiri-
cal findings that they classified as “hurdles” that any com-
plete model of choice confidence should clear. The cDDM 
clears seven of the hurdles with no issue. However, we 
would like to highlight two specific points.

First, Hurdle 7, where inaccurate responses on easy, time-
pressured trials generally have lower decision time compared 
to accurate responses, was not trivial for the cDDM to replicate 
(e.g., the diffusion noise parameter had to be increased beyond 
the range used to demonstrate the primary model predictions). 
We do not consider this to be a major problem, for several rea-
sons. First, this effect has only rarely been reported in prior 
studies, so its robustness has not been proven. Second, the effect 
applies to only a very limited percentage of trials, for it spe-
cifically addresses inaccurate responses on easy trials. Third, 
beyond the fact that this effect is limited to easy trials, it is said 
to be most prominent in conditions of time pressure, further 

reducing its general applicability. We note that Ratcliff and 
Rouder (1998) demonstrated that the effect (Hurdle 7) could 
be replicated by a DDM that includes trial-by-trial variability 
in the starting point of the evidence accumulator. While mathe-
matically clever, it is not immediately clear why such variability 
should be expected at the cognitive level. Some authors have 
speculated that starting point variability could capture potential 
residual effects of the evidence accumulation process on pre-
ceding trials (Pleskac & Busemeyer, 2010). Accordingly, if we 
were to add a starting point variability parameter on top of the 
cDDM as described in this work, the cDDM would also clear 
Hurdle 7. Although this seems reasonable, more evidence is 
needed before it becomes clear that this is truly something that 
all confidence models should consider.

Second, it is worth pointing out that the cDDM inherently 
replicates the effect summarized by Hurdle 6 (where inaccurate 
responses on difficult trials generally have higher decision time 
compared to accurate responses), whereas other models rely on 
the inclusion of an additional parameter that introduces vari-
ability into the drift rate (Pleskac & Busemeyer, 2010; Ratcliff 
& Rouder, 1998). It is suggested that this variability could cap-
ture potential lapses in attention or memory retrieval (Pleskac & 
Busemeyer, 2010). Again, this seems like a reasonable assump-
tion, though perhaps not a mandatory one.

Future Work to Adjudicate between Different 
Models

In this theoretical note, we propose an alternate interpreta-
tion of traditional evidence accumulation modes of choice. 
However, since the mathematical formulations of both the 
cDDM and standard DDMs are fundamentally similar, it is 
not entirely straightforward to empirically demonstrate the 
superiority of one over the other. Nevertheless, we believe 
that such an adjudication could be achieved through novel 
experiments that test the idea that what is directly monitored 
during choice deliberation – and what determines when to 
respond – is confidence (as opposed to “evidence”). One 
possible way that this could be done would be to train a 
decoder to transform EEG or MEG activity, measured at 
the time that participants report their confidence ratings, to 
readout confidence (across trials). One could then apply the 
decoding weights at each time point (within trials) and read 
out the theoretical time-varying (within-trial) confidence 
dynamics. If this technique works well, one would expect to 
find continuous, increasing (perhaps fluctuating) trajectories 
across time that might resemble our illustrative examples in 
Fig. 5. One could perform a similar analysis based on some 
measure of raw evidence rather than confidence and compare 
the decoding success, as well as the form of the anticipated 
trajectories, across confidence and evidence. In principle, 
this method should be able to provide strong evidence for or 
against the cDDM relative to the standard DDM.
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Conclusion

In this work, we argue that the deliberation process for 
simple types of decisions (such as two-alternative forced 
choices based on subjective value) is driven by a confi-
dence monitor rather than a monitor of accumulated evi-
dence in favor of one option over the other. This parsimo-
nious account describes the choice and confidence process 
as being tightly linked, and it can account for a wide array 
of behavioral and neural phenomena from the literature. It 
is also conceptually appropriate for real-world decisions 
(rather than externally-assigned laboratory tasks). In real 
life, people will need to set their own personal aspiration 
levels for choices they make (Simon, 1957). In other words, 
when faced with multiple options, people not only need to 
decide but they also need to decide when to decide. The 
confidence-driven drift-diffusion model (cDDM) that we 
present in this work offers a solution for how people sense 
the evolution of their confidence across deliberation time 
and make their choices in a way that optimizes the tradeoff 
between confidence and mental effort (Lee et al., 2023; Lee 
& Daunizeau, 2021).

Appendix A: Formulation of confidence 
for multi‑option choices

Define choice confidence Pc as the probability that the 
(predicted) experienced value of the (to-be) chosen option 
is higher than that of all the (to-be) unchosen options. 
Critically:

where the second set of equations derives from assuming 
that the option with the highest expected value will be chosen. 
Choice confidence is thus derived from a comparison between 
the best option (i.e., the option with the highest expected value 
μbest) and the maximum of the rest of the options. For example, 
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for a choice set containing three options, with the first option 
having the highest expected value, the expected maximum 
value of the other options is (Nadarajah & Kotz, 2008):

For a choice set with four options, with the first option hav-
ing the highest expected value, an iteration of this procedure 
will provide the expected value of the maximum of the options 
other than the best:

The first and second moments of the maximum function can 
be calculated iteratively to obtain first the expected maximum 
value of two of the three non-best options, then the expected 
maximum value of this value and the third non-best option:

Clearly, this iterative process could be repeated indef-
initely, allowing for a choice option set of arbitrarily 
large size.

Once the expected maximum value of the non-best 
options is determined, the DM will compare this value with 
the expected value of the best option. Thus, the decision 
variable (DV) will be a normally distributed random variable 
with mean equal to the difference of the best and max-non-
best means and variance equal to the sum of the best and 
max-non-best variances:

Subjective uncertainty regarding option values eventu-
ally translates into uncertainty regarding what the "correct 
choice" is. This is summarized in terms of the probability Pc 
of "committing to the correct choice":

where cdf is the cumulative density function of the cor-
responding normal distribution, evaluated at DV = 0, and 
the second line derives from a simple sigmoidal approxima-
tion to the normal cumulative density function (Daunizeau, 
2017).
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for a choice set containing three options, with the first option 
having the highest expected value, the expected maximum 
value of the other options is (Nadarajah & Kotz, 2008):

For a choice set with four options, with the first option hav-
ing the highest expected value, an iteration of this procedure 
will provide the expected value of the maximum of the options 
other than the best:

The first and second moments of the maximum function can 
be calculated iteratively to obtain first the expected maximum 
value of two of the three non-best options, then the expected 
maximum value of this value and the third non-best option:

Clearly, this iterative process could be repeated indef-
initely, allowing for a choice option set of arbitrarily 
large size.

Once the expected maximum value of the non-best 
options is determined, the DM will compare this value with 
the expected value of the best option. Thus, the decision 
variable (DV) will be a normally distributed random variable 
with mean equal to the difference of the best and max-non-
best means and variance equal to the sum of the best and 
max-non-best variances:

Subjective uncertainty regarding option values eventu-
ally translates into uncertainty regarding what the "correct 
choice" is. This is summarized in terms of the probability Pc 
of "committing to the correct choice":

where cdf is the cumulative density function of the cor-
responding normal distribution, evaluated at DV = 0, and 
the second line derives from a simple sigmoidal approxima-
tion to the normal cumulative density function (Daunizeau, 
2017).
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Appendix B: Non‑decision time and starting 
point bias

In a possible extended version of the model, the cDDM assumes 
that during the pre-deliberation NDT, when the options are 
being perceived and identified, a low-precision value representa-
tion of the options is automatically formed (Lee et al., 2023; Lee 
& Daunizeau, 2021). The brain automatically starts to process 
information related to value even when not actively deliberating 
about it (i.e., outside of actual decision time) or when prepar-
ing to deliberate about something unrelated (Lebreton et al., 
2009, 2015; Lopez-Persem et al., 2020). For the purposes of 
our model and theory, NDT corresponds to the time required for 
the perception and identification of the options (we choose not 
to consider post-deliberation motor response NDT). Crucially, 
the cDDM assumes that during this period, value representations 
of the options are formed in parallel to perceptual processes, but 
with rather low precision. This is because in this early sensory 
processing stage, the options are not yet completely perceived 
or identified. This early representation formation can be formal-
ized in the same manner as during explicit deliberation, only 
with lower precision (σNDT

2 > σ2; e.g., lower attention will be 
assigned to the valuation task at this stage):

At the end of NDT, the decision-maker will have an initial 
estimate of the value (v) of each option, as well as an initial 
estimate of precision (p) for the value estimates:

Based on the initial estimate and precision of value for 
each option, the decision-maker will already have an initial 
sense of confidence by the time deliberation commences. 
Thus, whereas the confidence monitor (c) begins the deci-
sion process at zero, it typically arrives at a non-zero point 
by the end of the NDT. This effectively creates a starting 
point bias (z) equal to the subjective probability that one of 
the options is better than the other (i.e., confidence) prior to 
explicit deliberation:

More generally, both the momentary value estimates and 
the momentary confidence level will continue to evolve across 
deliberation time. These variables will incorporate both the 
information that was automatically processed during NDT and 
the information that was deliberately processed after NDT:
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where τ is the time index at the moment the choice 
response is entered.
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