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Abstract

Cognitive and computational modeling has been used as a method to understand the processes underlying behavior in humans
and other animals. A common approach in this field involves the use of theoretically constructed cognitive models, such
as reinforcement learning models. However, human and animal decision-making often deviates from the predictions of
these theoretical models. To capture characteristics that these cognitive models fail to account for, recurrent neural networks
(RNNSs) have been increasingly used to model choice behavior involving reinforcement learning. RNNs can capture how
choice probabilities change depending on past experience. In this work, we demonstrate that RNNs can improve future choice
predictions by capturing individual differences on the basis of past behavior, even when a single model is fit across the entire
population. We refer to this capacity as the individual difference tracking (IDT) property. While the IDT property might
be useful for prediction, it may introduce excessive flexibility when RNNs are used as benchmarks for predictive accuracy.
We investigate the nature of the IDT property through simulation studies and examine how it affects the interpretation of
predictive accuracy when RNNs are used as benchmarks for cognitive models. We also present examples using real-world
data. Through these analyses, we discuss practical considerations and limitations in using RNNs as benchmarks for cognitive
models.
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To address this issue, the application of highly flexible arti-
ficial neural networks (ANNs) has gained attention in recent
years. When ANNSs are used as benchmarks, researchers can
compare their predictive performance with that of compu-
tational cognitive models to assess whether they adequately
capture the variability in data and whether any important cog-
nitive components are missing (Dezfouli et al., 2019; Song et
al., 2021; Fintz et al., 2022; Eckstein et al., 2024). If the pre-
dictive performance of a cognitive model is clearly inferior to
that of an ANN benchmark, it suggests that the model lacks
essential elements. In such cases, researchers may iteratively
refine the cognitive model by incorporating additional com-
ponents and reevaluating its performance. The use of ANN
benchmarks thus provides a means of determining how much
further model refinement may be needed.

In the context of reward learning in humans and other
animals, recurrent neural networks (RNNs), a type of ANN
for learning sequential data, are often employed (Dezfouli
et al., 2019; Song et al., 2021; Fintz et al., 2022; Ji-An et
al., 2023; Ger et al., 2024a; Rmus et al., 2024; Eckstein et
al., 2024). Among various RNN architectures, long short-
term memory (LSTM) (Hochreiter, 1997) and gated recurrent
units (GRUs) (Cho, 2014) are particularly prevalent. These
architectures are capable of capturing long-term influences
from past events, offering more flexible learning than theory-
based cognitive models such as RL models do (Dezfouli et
al., 2019). This flexibility enables RNNs to better model the
complex structure of behavior.

On the other hand, RNNs typically have a much larger
number of parameters than theory-based cognitive models
do, which often requires a relatively large amount of data
for effective training. As a result, it is generally difficult to
fit RNNs individually for each participant. Thus, researchers
typically pool data across participants and train a single RNN
model based on the entire dataset.

In general, when the amount of data is insufficient relative
to the number of parameters, a model may overfit to noise
or incidental structures unrelated to the true data-generating
process, resulting in poor generalizability. In statistical mod-
els such as cognitive models, information criteria such as
Akaike’s information criterion (AIC; Akaike, 1974) and the
Bayesian information criterion (BIC; Schwarz et al., 1978)
or model evidence (i.e., marginal likelihood) are commonly
used to penalize excess model complexity (Daw, 2011).
However, in ANNs such as RNNs, the number of param-
eters (i.e., weights) does not correspond directly to model
flexibility, and information criteria applicable to RNNs have
not yet been established.

As a practical solution, model performance for RNNs is
typically evaluated based on predictive accuracy on held-out
test data (Dezfouli et al., 2019; Song et al., 2021; Eckstein et
al., 2024). In RL tasks, however, data from successive trials
are often dependent on the sequential structure of the task.
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When participants are exposed to only one pair of stimuli, it
is difficult to split the data within a session into training and
test sets because subsequent responses may be influenced by
earlier trials. In such cases, a common strategy is to split the
dataset by participants—using some participants for train-
ing and others for testing (see Supplementary Fig. S1B for
a schematic illustration). Under this approach, participant-
specific models fitted to training data are unsuitable for
evaluating individual performance, as those individuals are
absent from the test set. Therefore, RL models must be fitted
using a single set of parameters shared across all participants.

However, when participants complete multiple indepen-
dent sessions (e.g., with different stimulus pairs), training
and test samples can be split at the session level (see Sup-
plementary Fig. SIA for a schematic illustration). In such
cases, it becomes possible to fit RL models individually for
each participant using one session and evaluate the predictive
accuracy with the other (Song et al., 2021). Nonetheless, this
type of design is still relatively rare.

Given these constraints, when comparing RNNs with
theory-based cognitive models such as RL models, it is com-
mon practice to also fit RL models using a single set of
parameters shared across participants (Dezfouli et al., 2019;
Fintz et al., 2022; Eckstein et al., 2024). This approach is
generally referred to as a fixed-effect model in the statistical
modeling literature. In this study, we refer to it as a “com-
mon fit” to emphasize that the same parameter set is applied
to all individuals. From this perspective, comparing RL mod-
els and RNNs in terms of model fit and predictive accuracy
can be considered fair, as both approaches rely on a single
group-level parameterization.

However, we demonstrate that even a single RNN might
learn individual differences from behavior during early tri-
als and use this information to predict subsequent behavior.
This occurs through what is known as in-context adaptation
or in-context learning, a property of RNNs whereby the inter-
nal state of the network is dynamically updated based on the
sequence of observed inputs—allowing the model to adjust
its behavior on a per-individual basis without explicitly esti-
mating separate parameters for each individual. We refer to
this ability as the individual difference tracking (IDT) prop-
erty of RNNs. We suggest that, owing to the IDT property,
RNNs might overestimate the prediction accuracy when used
as a benchmark against cognitive models that assume shared
parameters across individuals. We also discuss the impli-
cations of these properties for cognitive and computational
modeling.

Notably, this paper is not the first to mention the IDT prop-
erty of RNNs: Dezfouli et al. (2019) noted this possibility
in the last paragraph of their Discussion section. The novel
contributions of this paper are as follows. First, we illus-
trate the IDT property of RNNs using data generated from
numerical simulations based on simple RL models. We then
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examine the extent to which RNNs can express individual
differences through IDT across various scenarios involving
different underlying generative models. These simulations
demonstrate how the presence or absence of IDT affects the
interpretability of RNNs as predictive benchmarks for cogni-
tive models. The results show that RNNs do not always track
individual differences accurately and, in many cases, per-
form worse than cognitive models that are individually fitted
to data do. We also propose a method to quantify the degree of
IDT in a trained RNN, which we refer to as the on-policy IDT
check and investigate factors that suppress IDT, such as early
stopping and architectural constraints. In addition to syn-
thetic data simulations, we present empirical demonstrations
using real-world behavioral datasets to illustrate how RNNs
can be used as benchmarks for cognitive models while tak-
ing IDT into account. Finally, we discuss how RNNs should
be used as benchmarks for evaluating cognitive models, con-
sidering the presence of IDT and its limitations, and suggest
directions for future research.

Simulation Settings

In this paper, we first discuss the properties of RNNs trained
using behavioral data generated from simple RL models,
where the true underlying process is known. This setting
allows us to evaluate how well RNNs capture the structure
of the data, including individual differences. We simulated
the choice behavior of 100 agents (virtual subjects) engaged
in a two-armed bandit task using various RL models with
systematically varied parameters such as the learning rate.
Specifically, to generate the synthetic data, we used variants
of Q-learning models'. Among the variants, we focus in par-
ticular on the forgetting Q-learning (FQ-learning) model (Ito
& Doya, 2009). The behavior of this model is theoretically
guaranteed to be replicable even with the simplest form of
RNN (alinear RNN with a single RNN cell; see Appendix C).
More complex RNN architectures (e.g., vanillaRNN, LSTM,
and GRU) are likely to exhibit similar capabilities, allowing
us to eliminate the influence of model misspecification and
focus on the effects of individual differences.

In Q-learning models, the Q-value or action value,
Q:(a;), for a chosen option a; € {A, B} at trial ¢ is updated
as

Ort1(ar) = Oi(ay) +alry — Qr(ar)), (D

! When there is no state variable as in the present study assumed,
Q-learning and other variants of the RL algorithm, Sarsa, are indistin-
guishable (Sutton & Barto, 2018); however, following convention, we
refer to it as Q-learning. This model is also referred to as the Rescorla-
Wagner model or delta rule.

where o € [0, 1] is the learning rate, which determines the
extent to which the prediction error affects the updated value,
and where r; € {0, 1} is the reward received at trial ¢.

In standard Q-learning, the Q-value of the unchosen
option remains unchanged. In the forgetting variants of Q-
learning, the Q-value for the unchosen option a, is assumed
to decay as follows:

Oit1(ar) = (1 —arp)Qi(ar), @)

where af is the forgetting rate, which determines the rate
at which the value of the unchosen option decays. In FQ-
learning, o is set as o = « (the forgetting rate is identical
to the learning rate). The standard Q-learning model corre-
sponds to the setting where o = 0.

The choice probability (for option A) is determined by the
softmax function:

1

P =A) = .
@ =8 = o B0 (A) = 0,(B))

3

where f is the inverse temperature, which governs the sensi-
tivity of the choice probability to differences in option values.
A larger B results in a more sensitive change in the choice
probability. In the FQ-learning model, individual differences
are represented as the differences in the learning rate o and
the inverse temperature . Notably, in FQ-learning, « also
determines the strength of forgetting (i.e., the decay rate) for
the values of the unchosen options.

The agent simulated via RL models engages in a two-
armed bandit task (probabilistic reversal learning task),
where it receives rewards based on the reward probabilities
associated with each option; the reward probabilities switch
every 50 trials. Each agent completes two sessions of the
task, with each session consisting of 200 trials. One session
is used to generate training data for the RNN and RL models,
and the other is used as test data to evaluate the predictive
accuracy of the models. For further details about the task, see
Appendix A.l. In the simulation, we assumed 100 subjects
(agents), each modeled using the RL models.

For RNN model training and evaluation, the training data
from all 100 subjects were pooled to train a single model. The
predictive performance was then evaluated based on the test
data by computing the normalized log-likelihood for each
subject (see Appendix A.4 and A.6 for the details).

For RL model fitting, we applied both the common fit
approach, where a single parameter set is estimated by pool-
ing the training data across all 100 subjects, similar to the
RNN, and the individual fit approach, where parameters are
estimated separately for each subject. Details of the model fit-
ting and evaluation procedures are provided in Appendix A.3
and A.6. As noted in the Introduction, the common fit
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approach is often applied when the subjects in the training
and test datasets differ. In our simulation settings, however,
the same subjects (i.e., agents with identical parameter val-
ues) were included in both the training and test datasets. This
design is expected to be comparable to real-world scenar-
ios, as long as the parameter distributions across subjects
in empirical data are not substantially different between the
training and test sets.

lllustration of the IDT Properties of an RNN

We begin by considering a case where the ground-truth model
is an FQ-learning model, and both an FQ-learning model with
common parameters and an RNN are fitted to the simulated
data. In the following analyses, we primarily use a GRU-
based architecture for the RNN. Unless otherwise noted, the
term “RNN” refers to an RNN implemented with a GRU
(for details on the RNN architecture, see Appendix A.4). The
simulated data were pooled across subjects, and each model
(RNN and FQ-learning) was trained to estimate a single set
of parameters using the entire dataset. Choice predictions
were generated using off-policy simulation, meaning that
each model predicted the probability of the choice at trial
t based on the history of choices and rewards up to trial # — 1,
without actually selecting actions.

Figure 1A shows the choice probabilities produced by
the RNN and the common-fit FQ-learning model when all
the subjects shared the same (ground-truth) learning rate
(o = 0.5), implying no individual differences. The gray lines
represent the true choice probabilities for option A generated
by the FQ-learning model (almost completely overlapped
with the colored lines in this case). In this case, the choice
probabilities predicted by the common-fit FQ model (left
panel, blue line) closely match the true choice probabilities
generated by the ground-truth FQ model (gray line). This
result is expected, as the fitted model structure, including the
absence of individual differences, perfectly matches the gen-
erative model, and sufficient data are available for estimation.

The RNN produces an almost perfect match to the ground-
truth model (right panel, orange line), with the KL divergence
(per trial) between the true and predicted choice probabili-
ties near zero (see Appendix A.6 for the definition of KL
divergence). This close match is also theoretically expected:
when the ground truth is an FQ-learning model with no indi-
vidual differences, even the simplest RNN with linear units
can exactly reproduce the same input—output behavior (see
Appendix C). Therefore, it is unsurprising that an RNN,
which uses hyperbolic tangent activation functions and can
approximate linear responses in certain regimes, can learn
behavior that is effectively equivalent to that of the FQ model.
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Next, we consider a simple case involving individual dif-
ferences. Figure 1B depicts a scenario in which the ground-
truth agents follow the FQ-learning model, but with two
distinct learning rates: half of the agents (Subjects 1 to 50)
have a low learning rate (@ = 0.1), and the other half (Sub-
jects 51 to 100) have a high learning rate (¢« = 0.9). This
setup instantiates the kind of situation discussed conceptu-
ally by Dezfouli et al. (2019). The left panels show data from
a representative low learning rate agent, while the right pan-
els show data from a high learning rate agent. As expected,
the choice probabilities of the low learning rate agent change
gradually, reflecting slower learning (left panel, gray line).
In contrast, the high learning rate agent shows rapid fluc-
tuations in choice probabilities, driven by recent outcomes
(right panel, gray line).

The upper panels of Fig. 1B show predictions from the
FQ-learning model fitted with a single, common parame-
ter set (including learning rate) across all subjects (blue
lines). Because this model must compromise between the two
extreme learning rates among subjects, it adopts an interme-
diate learning rate. As a result, its choice probability (blue
line) changes more rapidly than that of the low learning rate
agents and more gradually than that of the high learning rate
agents, leading to deviations from the true values in both
cases. The KL divergences are approximately 0.05.

In the RNN model (bottom panels), there is an initial
divergence between the true model and the RNN’s predic-
tion (orange line) for the first 20 trials. However, beyond this
point, the RNN effectively captures the overall trend of the
true choice probability. This behavior demonstrates that the
RNN effectively captures individual differences by leverag-
ing information from earlier trials, storing this information
in the latent units (see Supplementary Text S2, Figure S7,
where we plot the latent variables). This mechanism can be
regarded as the IDT property. Owing to this property, the KL
divergence is less than 0.01.

While Fig. 1 shows the behavior of a single subject
from each group, Supplementary Fig. S2 shows trial-by-trial
choice probabilities for all subjects under conditions with
individual differences, including both individual trajectories
and group averages. The predicted choice probabilities of the
RNN closely match the true model’s probabilities on average,
which demonstrates that the RNN successfully captures indi-
vidual differences and tracks changes in choice probability
across subjects.

In the settings used in Fig. 1B, we consider a case with a
large difference in learning rates (i.e., « = 0.1 vs. 0.9). To
explore how much individual difference is required for the
RNN to begin adapting through IDT, we further examine this
question in Supplementary Text S1, where we systematically
vary the values of « of the ground-truth model (Fig. S5). We
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Fig.1 TIllustration of the individual difference tracking (IDT) property
of an RNN. The plots show the trajectories of choice probabilities out-
put by a common-fit FQ-learning model (shown in blue lines) and an
RNN (here, a GRU; shown in orange lines) trained based on data simu-
lated using the FQ-learning model (shown in gray lines) in a two-armed
bandit task. A Case without individual differences, where all the sub-
jects share a common learning rate (¢ = 0.5). B Case with individual
differences, where half of the subjects (Subjects 1 to 50) have a low

find that when the difference in learning rates reach approxi-
mately 0.4 (e.g., o = 0.3 vs. 0.7), the predictive accuracy of
the RNN improves as a result of IDT.

In addition to individual differences in the learning rate o«
(as shown in Fig. 1), we confirm that the RNN can also adapt
to differences in the inverse temperature 8 through the IDT
mechanism (Supplementary Fig. S3).
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learning rate (¢« = 0.1) and the other half (Subjects 51 to 100) have
a high learning rate (o = 0.9). The upper panels show the results of
fitting an FQ model with common parameters (blue), and the lower
panels show the results from the RNN (GRU). KL: Kullback—Leibler
divergence between the true and predicted choice probabilities. A value
of zero indicates perfect agreement between the model’s prediction and
the true choice probability

Impact of IDT on the Use of RNNs
as Benchmarks for Cognitive Models:
lllustrative Scenarios

We investigate how the IDT property of RNNs may influ-

ence conclusions about whether a fitted cognitive model
(here, an RL model) sufficiently accounts for variability in
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choice behavior when RNNs are used as a benchmark. To this
end, we present illustrative scenarios based on data gener-
ated through simulations, in which RL models are evaluated
according to their predictive accuracy relative to an RNN and
examine how the presence of IDT can affect the interpretation
of such comparisons.

Scenario 1: When the FQ-learning Model is the True
Model

In modeling an RL process in the two-armed bandit task, the
standard Q-learning model, where the value of the unchosen
option is not updated (i.e., «r = 0 in Eq. 2), is more com-
monly used than the FQ-learning model. On the other hand,
several studies have reported that incorporating forgetting, as
in the FQ model, can often improve model fit (Ito & Doya,
2009; Gershman et al., 2017; Katahira et al., 2017; Toyama
etal., 2019b; Groman et al., 2019). Suppose a researcher first
applies the standard Q-learning model to data. A key ques-
tion is then whether the predictive accuracy based on test
data can be regarded as sufficient, or whether there remains
room for improvement. To answer this question, we consider
whether an RNN can serve as a benchmark for evaluating the
adequacy of a cognitive model.

Fig.2 Comparison of the
predictive accuracy of RL
models and RNNs in a scenario
where the true model is the
FQ-learning model, with

Scenario 1

We first consider a case the same as that shown in Fig. 1B,
where the true underlying model is the FQ-learning model,
and agents exhibit individual differences in learning rate:
half of the subjects have a learning rate of 0.1, and the other
half have a learning rate of 0.9. Each simulated subject com-
pletes two sessions; one session is used for training/fitting the
RNN and Q-learning models, and the other session is used
for testing the predictive performance. Predictive accuracy
is quantified using the normalized likelihood, defined as the
likelihood per trial on the test data (see Appendix A.6 for
details).

Figure 2 shows the results. Let us focus first on the stan-
dard Q-learning model (denoted “Q”) shown on the left.
The blue markers indicate the performance of the common
fit, where a single parameter set is estimated for the entire
group. This model yields significantly lower predictive accu-
racy than the RNN does (paired 7-test, p < 0.05; asterisks in
the figure indicate models significantly worse than RNN).
Even when using the individual fit (maximum a posteri-
ori, MAP, see Methods for details), the standard Q-learning
model fails to achieve accuracy comparable to that of the
RNN (p < 0.05). These results suggest that the standard
Q-learning model lacks critical components necessary to
capture the cognitive processes underlying behavior.

Ground truth: FQ with Individual Differences
* Lower predictive accuracy than RNN (p < 0.05, paired t-test)

0.64

individual differences in
learning rates (Scenario 1). In
this scenario, half of the subjects
have a learning rate of « = 0.1,
and the other half have a
learning rate of « = 0.9. The
inverse temperature f3 is fixed at
3.0 for all the subjects.
Predictive accuracy is shown in
terms of normalized likelihood
for the actually chosen options.
“Q” refers to standard
Q-learning model, “FQ” to
forgetting Q-learning model,
and ‘RNN’ to a recurrent neural
network with gated recurrent
units (GRUs). The gray
horizontal line represents the
predictive accuracy based on the
choice probabilities of the true
model (FQ-learning). Error bars
indicate standard errors of the
mean. Asterisks () indicate
models that perform
significantly worse than the
RNN (paired ¢-test, p < .05)
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Next, suppose the researcher adds the FQ-learning model
as a candidate model for fitting. In this case, the fitted model
is identical in structure to the true generative model. Despite
this, the common-fit FQ model yields significantly lower pre-
dictive accuracy than the RNN (Fig. 2, “FQ,” blue marker).
This discrepancy can be attributed to the IDT property of
RNNSs: whereas the common-fit FQ model cannot account
for individual differences, the RNN can implicitly capture
such differences, thereby achieving higher predictive per-
formance. Consequently, a researcher relying solely on the
common fit might incorrectly conclude that the FQ model is
inadequate.

In contrast, when the FQ model is fitted individually
(using MAP estimation), its predictive performance matches
or exceeds that of the RNN (green marker). In this case,
comparing the individually fitted model to the RNN appears
to be a reasonable approach. However, this outcome relies
on the assumption that the IDT property allows the RNN
to adequately capture individual differences. In the present
example, this assumption may hold to some extent (except
for the early trials): the RNN’s predicted choice probabili-
ties closely match those of the ground truth (see Fig. 1B).
Nonetheless, this assumption does not always hold. We
examine such a case in the next scenario.

Scenario 2: When IDT Fails to Fully Capture
Individual Differences

The previous scenario, in which the learning rates are one of
two fixed values, represents an extreme case in terms of indi-
vidual differences. In practice, it is more natural to assume
that parameters such as the learning rate are continuously
distributed across individuals within a population. The same
applies to the inverse temperature parameter 8, which gov-
erns the randomness of choice behavior. Moreover, when
the true underlying model is not the FQ-learning model, the
influence of past experiences on current choices can involve
statistical interactions (Katahira, 2015), resulting in more
complex dependencies between reward and choice histories.
In such cases, the IDT property of RNNSs is expected to yield
an even more incomplete approximation of individual differ-
ences. Here, we examine a scenario in which the true model
is the asymmetric learning rate model (simply referred to as
the “Q+A model”), where the learning rate varies depend-
ing on the sign of the reward prediction error such that the
Q-value of the chosen option a; is updated as follows:

O (ar) +Ol+(rt = O¢(ay)) ifr; — Qs(a;) =0

Q1) = { Oi(ar) + o (rr — Qilar)) ifry — Qr(ar) <07

“)

This model has been widely used in numerous studies that
model human and animal learning behavior (Niv et al., 2012;

Frank et al., 2007; Lefebvre et al., 2017; Palminteri et al.,
2017). In this model, interactions between reward outcomes
across trials can arise; for example, the influence of a reward
received two trials ago may depend on whether a reward
was received in the previous trial (Katahira, 2018). In this
scenario, we do not assume any forgetting effect (i.e., o =
0).

Figure 3A shows the predictive accuracy of RL models
and the RNN when the true model is the Q+A model with
individual differences (Scenario 2a). As expected, the high-
est predictive performance is achieved when the fitted model
is the same as the true model (Q+A) and is fitted individu-
ally (Fig. 3A). The RNN achieves higher predictive accuracy
than the common-fit Q+A model, presumably due to the IDT
property. However, this improvement is modest and does not
reach the level of the individual-fit O+A model. Notably,
when the standard Q-learning model is fitted individually, its
predictive accuracy is not significantly different from that of
the RNN (#(99) = 1.614, p = 0.110). This finding implies
that if researchers focus on the predictive performance of
individually fit models and use the RNN as a benchmark,
they may mistakenly conclude that the standard Q-learning
model is sufficient without ever considering the more appro-
priate Q+A model.

As shown above, the IDT property of RNNs does not
always support the full capture of individual differences.
While the significantly lower predictive accuracy of an indi-
vidually fitted model compared to that of the RNN suggests
that essential components may be missing from the model,
it is important to emphasize that comparable or superior pre-
dictive performance of the individually fitted model relative
to that of the RNN does not necessarily imply that the cogni-
tive model is sufficient and leaves no room for improvement.
Furthermore, the results from both Fig. 2 and Fig. 3 demon-
strate that even when a common-fit cognitive model performs
worse than the RNN does in terms of predictive accuracy,
this discrepancy may be due to the RNN’s ability to exploit
individual differences via the IDT property. Thus, inferior
performance of the common-fit model does not necessarily
indicate structural inadequacy of the cognitive model.

Figure 3B shows the results for a scenario in which the
true model is the Q+A model, but no individual differences
are assumed, that is, all agents share the same (ground truth)
parameter values (Scenario 2b). In this case, the common-
fit Q+A model achieves predictive accuracy comparable to
that of the RNN. In contrast, the individual-fit Q+A model
exhibits lower predictive performance compared to that of
the common parameter model, likely due to increased esti-
mation error arising from fitting each subject separately;
when individual variability is sufficiently small, a common-
fit (fixed-effect) model can reduce estimation noise and
outperform individually fitted models in terms of prediction
accuracy (Katahira, 2016). Notably, the RNN also achieves
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Fig. 3 Comparison of RL models and RNNSs in a scenario where the
true model is an asymmetric learning rate model (Q+A), in which learn-
ing rates differ depending on the sign of the prediction error. A A case
with individual differences where all the parameters are continuously
distributed across the subjects (Scenario 2a). B A case without any
individual differences, where all the parameters are fixed and shared
across all the subjects (Scenario 2b). In Scenario 2a, the learning rates

predictive accuracy equivalent to that of the true model in
this case. This finding suggests that when a cognitive model
with common parameters achieves predictive accuracy com-
parable to that of the RNN, the model may be considered
adequate. However, such a conclusion relies on the assump-
tion that the RNN has appropriately captured the underlying
generative process. In practical applications with empirical
data, the true process is unknown, and verifying whether the
RNN has sufficiently captured it is generally a difficult task.

Decomposing Predictive Accuracy and the Influence
of IDT

Based on the scenarios and simulation results described
above, we summarize the factors that contribute to predictive
accuracy and consider how the IDT property may influ-
ence the use of RNNs as benchmarks. The total variability
in choice behavior can be separated into model-explainable
and model-unexplainable components. The explainable com-
ponent defines the upper bound of predictive accuracy
achievable by the ground-truth model. The unexplainable
component, which cannot be captured by any model, is irrel-
evant when comparing models. The key focus lies in how the
explainable component is structured.

We decompose predictive accuracy, which is quantified
as normalized likelihood on test data, into several contribut-
ing components (Fig. 4). Let us first consider the predictive
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for positive and negative prediction errors (@™ and o ™) are indepen-
dently sampled from uniform distributions: & ~ Uniform(0.4, 0.9)
and @~ ~ Uniform(0.1, 0.6). The inverse temperature B is sampled
from Uniform(1.0, 4.0). In Scenario 2b, the learning rates are fixed at
at =0.8and o~ = 0.2 for all the subjects, and the inverse temperature
B is fixed at 3.0. Error bars indicate the standard errors of the mean

accuracy of cognitive models (e.g., RL models; Fig.4A). A
common-fit cognitive model improves predictive accuracy by
capturing cognitive processes that are shared across the pop-
ulation (“Capturing common cognitive processes”). An indi-
vidually fitted model further enhances predictive accuracy by
accounting for individual differences (“Capturing individual
differences”). However, individually fitted models are more
susceptible to estimation error, which can reduce predic-
tive performance (“Estimation error”). Although common-fit
models also suffer from estimation error, this effect is typ-
ically smaller due to the use of more data and is therefore
neglected here.

Figure 4A illustrates a situation corresponding to the com-
parison between the Q+A model and the RNN in Scenario 2a,
where the RNN outperforms the common-fit RL model but
underperforms the individually fitted model. Two factors may
account for the RNN’s higher predictive accuracy relative to
that of the common-fit model. First, the RNN may better
capture group-level cognitive processes that the common-fit
model fails to represent (indicated by the red arrow), which
is often the intended role of RNNs in cognitive modeling.
Second, the RNN may improve prediction by leveraging its
IDT property to capture individual differences (gray arrow).

However, it is difficult to distinguish these two factors.
It is possible that the improvement results entirely from
IDT-based adaptation to individual differences, without any
advantage in capturing shared cognitive processes (i.e., the
red arrow may be absent). Therefore, the fact that the RNN
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Fig. 4 Schematic decomposition of predictive accuracy across differ-
ent modeling approaches: a cognitive model with common parameters
(common fit), a cognitive model with individual parameters (individ-
ual fit), and an RNN. A Case where the RNN performs better than the
common-fit cognitive model but worse than the individual-fit model.

outperforms the common-fit model does not necessarily
imply that the cognitive model lacks essential structural com-
ponents.

Figure 4B corresponds to a case in which the RNN outper-
forms even the individual-fit model, as observed in Scenario
1 when evaluating the standard Q-learning model. In such
cases, even if the RNN’s IDT accounts for individual dif-
ferences to a similar extent as the individual-fit model, the
remaining gain in predictive accuracy implies that the RNN
is capturing aspects of the behavior that the cognitive model
fails to represent. This suggests a structural limitation in the
cognitive model.

Figure 4C corresponds to Scenario 2b, in which there are
no individual differences in the data-generating process, as
in the comparison with standard Q-learning or FQ-learning.
In such cases, the predictive accuracy of the common-fit

B Sufficient IDT
Ground truth

RNN
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Individual ‘ IDT
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Common fit

1 Capturing factors
beyond the cognitive
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Cognitive model
(RL model)

C No individual difference
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Individual fit
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B Case where the RNN achieves higher predictive accuracy than the
individual-fit cognitive model does, assuming that IDT is sufficient.
C Case where the common-fit cognitive model performs as well as
or better than the individual-fit model does, suggesting that individual
differences are negligible

cognitive model is comparable to or even better than that
of the individually fitted model, indicating that individual
differences are negligible. Accordingly, IDT is unlikely to
contribute to improved predictions by the RNN. Therefore,
if the RNN still outperforms a cognitive model, it likely
indicates that the cognitive model is missing key structural
components.

Assessing and Suppressing the IDT Property
Evaluating IDT via On-Policy Simulation
The presence of IDT introduces uncertainty when interpret-

ing the predictive accuracy of RNNs used as benchmarks
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for cognitive models. Therefore, it can be useful to assess
whether an RNN can track individual differences (IDT), and
if so, to what extent. For instance, if IDT can be sufficiently
suppressed, it would justify a fair comparison between the
RNN and common-fit cognitive models, as the RNN would
more likely reflect only shared cognitive processes.

Here, we consider a method for assessing whether an RNN
has acquired IDT. We adopt a heuristic approach based on an
on-policy simulation (Dezfouli et al., 2019; also referred to
as a closed-loop simulation), in which a trained RNN is used
to generate new choice data by sampling actions according
to its own predicted choice probabilities. The RNN receives
input in the form of sequences of past choices and rewards
(over 50 trials), generated from RL models with a plausible
range of parameter values, in order to induce diversity in its
latent states. We then fit an RL model to the simulated choice
data and examine the distribution of the resulting parameter
estimates. If the estimated parameters are narrowly concen-
trated around a single point despite the variability in input,
this suggests that the RNN does not retain information about
individual differences and therefore lacks IDT. For further
details, see Appendix A.7.

Figure 5D shows the results of the IDT check conducted
on an RNN trained with data generated from the FQ-learning
model, where individual differences exist only in the learning
rate, «, as in Scenario 1. After 1000 training iterations (right
two panels in Fig. 5D), the KL divergence reaches its mini-
mum, and the estimated values of « from the data generated
by the RNN are distributed around the true values of 0.1 and
0.9, indicating that the RNN has stably maintained individual
differences (Fig. 5D). This finding suggests that despite the
RNN initially receiving input data generated from a broad
range of learning parameters, its latent states ultimately con-
verge, yielding a model that behaves stably according to one
of the two distinct parameter values.

Figure SA shows the learning curves of the loss func-
tion and KL divergence during training. Before converging
to their asymptotic values, there is a phase in which learn-
ing temporarily plateaus, followed by a sharp decrease in
loss. Figure 5SC (top panels) shows the RNN’s predictions at
200 training iterations, corresponding to this plateau phase.
Notably, at training step 200, the RNN’s predicted choice
probabilities closely match those of the common-fit FQ-
learning model (shown in light blue), suggesting that the
RNN captures the group-level cognitive process during this
stage.

In addition, during this stage, the on-policy IDT check
reveals that the estimated learning rate parameters exhibit a
unimodal distribution that is narrowly concentrated around
0.5 (Fig. 5D). This finding suggests that even after updat-
ing the latent state with 50 trials of off-policy simulation
using agents with a wide range of parameter values, the effec-
tive learning rate in subsequent choices remains unchanged,
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providing evidence that the RNN has not yet acquired the
IDT property.

These results indicate that, during training, the RNN first
learns the common processes across all subjects, akin to a
common-fit FQ-learning model, before later acquiring IDT
as training progresses.

Early Stopping of Training

As observed above, stopping RNN optimization at earlier
training steps may suppress IDT. When using this RNN as
a benchmark for model comparison, its predictive accuracy
becomes comparable to that of the common-fit FQ model
(Fig. 5B). This result suggests that, within the scope of
common-fit models, the FQ-learning model may be consid-
ered a sufficient model.

However, early stopping may not only suppress IDT but
also prevent the RNN from capturing common cognitive pro-
cesses shared across the population. For example, consider
the previously discussed scenario in which the true model
is the Q+A model without individual differences (Scenario
2b). Supplementary Figure S3 shows the results of the on-
policy IDT check for this scenario. The true learning rates
were set to o™ = 0.8 and @~ = 0.2. When the RNN was
trained for 600 steps, the on-policy simulation confirmed that
it successfully captured these parameters. However, at 100
training steps, the estimated @™ and o~ were narrowly con-
centrated around 0.3 to 0.4, indicating that the RNN failed
to adequately represent the true underlying process.

In real-world applications, where the true generative
model is unknown, it is difficult to determine whether an
under-trained RNN, which does not account for individual
differences, can still appropriately represent the common
cognitive process of the population. One possible approach
is to use the on-policy IDT check to identify the maximum
number of training steps before IDT emerges. However, this
method may be impractical, as each on-policy IDT check
requires computationally intensive simulations and model
fitting. Moreover, it remains unclear to what extent the pat-
tern in which common cognitive processes are learned first,
followed by individual differences, represents a general phe-
nomenon. For these reasons, suppressing IDT through early
stopping may not be a viable or practical approach when
analyzing real-world data.

Effect of Reducing the Number of RNN Units on IDT
Suppression

Another intuitive approach for suppressing IDT is to simplify
the architecture of the RNN. One practical method involves
reducing the number of hidden units, based on the rationale
that representing individual differences as latent variables
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requires a sufficient number of units dedicated to capturing
such variation.

The results of simulations examining this possibility are
shown in Fig. 6. In addition to the GRU-based RNNs, we
included results from linear RNNs, architectures in which
the recurrent layer consists of purely linear units, as an exam-
ple of simplified network structures. In panel A, the true
model is an FQ-learning model with two distinct learning
rates (as in Scenario 1). In this setup, a KL divergence of
approximately 0.05 indicates that IDT has not been acquired,
whereas values below this threshold suggest the presence of
IDT (see Fig. 1). Contrary to expectations, even a small num-
ber of units (around 2 to 3) was already sufficient for the
KL divergence to drop below the threshold, indicating the
acquisition of IDT. Furthermore, in the absence of individual
differences (panel B), we observe that when the true model
is the FQ-learning model, even a single unit is sufficient
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Fig. 6 Relationship between the predictive accuracy and the number
of RNN cells. The vertical axis represents the Kullback—Leibler (KL)
divergence between the predicted choice probabilities of the RNN mod-
els (GRU and linear RNN) and the true probabilities; lower values
indicate better predictive performance. The left panels correspond to
scenarios with individual differences, while the right panels correspond
to scenarios without individual differences. A Scenario in which the
true model is the FQ-learning model with two learning rates groups:
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to achieve near-zero KL divergence, as predicted by theory
(Appendix C).

Panels C and D present results for the scenario in which
the ground-truth model is the standard Q-learning model,
where the values of unchosen options do not decay. In this
scenario, interactions arise between past choices and rewards
that are not easily captured by linear RNNs (Katahira, 2015).
When there are individual differences in the learning rate «,
the pattern resembles that of the FQ-learning model (panel
C). As shown in panel C, RNNs with two or more hidden
units exhibit a marked decrease in KL divergence, indicating
that IDT has been acquired. When there are no individual
differences (panel D), models with two or more units also
show a substantially lower KL divergence than those with a
single unit. This contrast does not emerge in linear RNNs,
suggesting that the nonlinearity of the RNN enables it to
capture the history-dependent characteristics of Q-learning.
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divergence falls below 0.05. B Scenario in which the true model is the
FQ-learning model with no individual differences. C Scenario in which
the true model is the standard Q-learning model with two learning rates
groups: @ = 0.1 and @ = 0.9. D Scenario in the true model is the Q-
learning model without individual differences. Error bars indicate the
mean and standard error across five repetitions



Computational Brain & Behavior

These findings indicate that IDT can emerge with as few
as two units, and that multiple nonlinear units are necessary
to adequately capture common cognitive processes. Thus,
simply reducing the number of RNN units is unlikely to sup-
press IDT without compromising the flexibility that RNNs
are expected to provide for modeling complex reinforcement
learning processes.

Empirical Demonstration Based
on Real-World Datasets

We now present empirical examples of using RNNs as bench-
marks for cognitive models, using real-world choice behavior
data from a two-armed bandit task. The aim is to demon-
strate how IDT should be accounted for when using RNN's
for predictive benchmarking, rather than to replicate or rein-
terpret the original analyses. Accordingly, some aspects of
our modeling and analysis procedures differ from those in the
original studies. For instance, while the original studies did
not employ cross-validation, we incorporate it here to evalu-
ate the RNN’s predictive performance—none of the original
studies used RNNs in their analyses.

The primary datasets analyzed here consist of human
choice data from two-armed bandit tasks: the dataset from
Sugawara and Katahira (2021) (referred to as the “Sugawara
dataset,” n = 143), the dataset from Palminteri et al. (2017)
(referred to as the “Palminteri dataset,” n = 20), and the
dataset from Waltmann et al. (2022) (referred to as the “Walt-
mann dataset,” n = 40).

In these studies, the same participants engaged with mul-
tiple independent stimulus pairs (contexts), allowing us to
split the data into training and test sets at the session (con-
text) level. Additionally, a key contrast between the three
datasets (Waltmann dataset vs. the others) is the substantial
difference in the number of trials per context. For the details
of these datasets, see Appendix A.8.

Sugawara and Palminteri Datasets

The experimental design of Sugawara and Katahira (2021)
follows that of Palminteri et al. (2017), with essentially iden-
tical key features such as the number of trials and reward
probabilities. In these experiments, trials from eight contexts
are presented in an intermixed manner, with four contexts
appearing in the first session and the remaining four in the
second session. Each context consists of only 24 choice tri-
als. This limited trial number per context may reduce the
likelihood of RNNss developing strong IDT properties.

The predictive accuracies on the test data for various RL
model variants and the RNN model for Sugawara dataset
are shown in Fig. 7A. The Q and Q+A models with indi-
vidually or common fit performed significantly worse than
the RNN did. This result indicates that these two models

are insufficient in terms of predictive accuracy and suggests
room for improvement in their model structure. The Q+C
and Q+CA models extend the Q and Q+A models, respec-
tively, by incorporating choice hysteresis, accounting for the
gradual influence of past choices (see Appendix A.2). These
models were previously examined by Sugawara and Katahira
(2021), and they demonstrated improved predictive accuracy
compared to that of models without choice hysteresis (Q
and Q+A models). We also evaluated the FQ-learning and
FQ+C models, the latter of which incorporates both forget-
ting and choice hysteresis. The predictive accuracy for the
individually fitted Q+C, Q+CA, FQ, and FQ+C models were
comparable to or exceeded that of the RNN. However, under
common fit, all of them exhibited significantly worse accu-
racy than the RNN.

To assess the degree to which the RNN acquired IDT, we
performed on-policy IDT check using the RNN trained based
on the Sugawara dataset. Specifically, we fitted the FQ+C
model, which achieved the best predictive accuracy among
the common-fit models, to data generated from the RNN.
Figure 7B shows the distribution of parameter estimates of
the fitted FQ+C model. The distribution was not particularly
broad and concentrated on a single point, suggesting that the
RNN did not strongly acquire IDT.

In summary, while it is clear that standard Q-learning
model without forgetting and the Q-learning model with
asymmetric learning alone are insufficient, the common-
fit RL models underperform the RNNs, which we assumed
exhibited minimal IDT, suggesting that some cognitive com-
ponent may be absent in the RL models we considered.

Figure 7C and D show the results for the Palminteri
dataset. In contrast to the Sugawara dataset, the predictive
accuracies of individually fitted models were lower than those
of the corresponding common-fit models in most cases (4 out
of 6 models). This finding suggests that individual differences
were smaller in this dataset. As a result, the on-policy IDT
check (Fig. 7D) also showed narrow parameter distributions,
similar to those observed in the Sugawara dataset, indicating
that the RNN likely did not acquire substantial IDT.

Considering that the predictive accuracy of the common-
fit Q+C, FQ, and FQ+C models was not significantly lower
than that of the RNN, there is no clear evidence that these
RL models lack essential cognitive processes captured by the
RNN. This result suggests that the FQ and FQ+C models may
be sufficient for explaining choice behavior in this dataset.
However, it is important to note that the Palminteri dataset
included only 20 participants (compared to the 143 partic-
ipants in the Sugawara dataset), and the lack of significant
differences may simply reflect insufficient statistical power.

Overall, the normalized likelihoods were lower in the
Sugawara dataset (0.54-0.56) compared to those in the
Palminteri dataset (0.60-0.63). The Sugawara data were col-
lected online, which may have resulted in some participants
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Fig. 7 Empirical demonstration using real-world data. A and B Sug-
awara dataset; C and D Palminteri dataset. A and C Predictive accuracy
(normalized likelihood) on the test data for various RL models and the
RNN model. Each bar represents the mean predictive accuracy across
participants. The error bars indicate the standard error of the mean
(SEM). Asterisks indicate that the model performed significantly worse

being inattentive or unengaged, leading to noisier and less
predictable behavior (cf. Zorowitz et al., 2023). In contrast,
the Palminteri data were collected in a laboratory setting,
likely leading to greater engagement and more consistent
behavior that is easier to model.

Regarding individual variability, participants in the Pal-
minteri dataset had a relatively narrow age range (mean
£ SD = 23.9 £ 0.7 years), whereas the Sugawara dataset
included participants with a wider age range (38.7 £ 9.6

@ Springer
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than the RNN did (paired ¢ test, p < .05). B and D Results of the on-
policy IDT check: Distribution of parameters estimated by fitting the
FQ+C model to simulated choice data generated by the RNNs. The
narrow distribution in all the panels suggests that the RNNs did not
strongly acquire IDT in either dataset

years), suggesting greater heterogeneity in the latter. On the
other hand, both datasets involved only 24 trials per stimu-
lus pair, which may have been insufficient for the RNN to
acquire strong IDT properties.

Notably, the FQ and FQ-C models were not considered
in the original studies (Palminteri et al., 2017; Sugawara
& Katahira, 2021), and their performance, which was com-
parable to or even better than that of models with choice
hysteresis, was unexpected. One possible explanation is
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that forgetting, by reducing the value of unchosen options,
increases the tendency to repeat the same choice, thereby
inducing the effective choice hysteresis.

Waltmann Dataset

In the experiment by Waltmann et al. (2022), the primary aim
was to assess the test—retest reliability of RL parameter esti-
mates. Participants completed two sessions of a two-armed
bandit task with the same underlying reward probability
structure (though the visual stimuli representing the options
differed), approximately one week apart. Each session con-
sisted of 160 trials. We treated the first session as training
data and the second session as test data (see Appendix A.8
for details).

Figure 8A shows the predictive accuracy of each model.
The differences between RL models were relatively small
compared to those in the Sugawara dataset, particularly
between the Q and Q+A models and their counterparts incor-
porating choice hysteresis (Q+C and Q+CA; see Fig. 7 for
comparison). When using the RNN as a benchmark, the
overall pattern was consistent with that observed in the Sug-
awara data: while the Q, Q+C, Q+CA, FQ, and FQ+C models
showed comparable predictive accuracy to that of the RNN
under individual-fit approach, they performed significantly
worse under common-fit approach.

Waltmann dataset

A

The results of the on-policy IDT check (Fig. 8B) showed
slightly broader distributions of the learning rate and choice
trace decay parameter compared to those of the RNN trained
based on the Sugawara and Palminteri datasets, suggest-
ing that the RNN may have acquired a weak degree of
the IDT property. Among the common-fit RL models, the
FQ+C model had the highest predictive accuracy, but it still
underperformed relative to the RNN. However, the RNN’s
advantage may reflect its IDT property, leaving insufficient
evidence to conclude that the FQ+C model is inadequate.
Thus, it is possible that the FQ+C model is sufficient.

Discussion

In this study, we demonstrated that RNNs, which are increas-
ingly used to model behavior in both humans and animals,
can capture individual differences in learning and decision-
making processes. We refer to this property as individual
difference tracking (IDT). This property arises from the
RNN’s capacity for in-context adaptation, where past expe-
riences are stored in latent states and influence subsequent
predictions.

RNNS have attracted attention in computational cognitive
modeling as models capable of representing more flexible
processes than theory-based cognitive models can. However,

* Lower predictive accuracy than RNN (p < 0.05, paired t-test)
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Fig. 8 Empirical demonstration using real-world data (Waltmann
dataset). A Predictive accuracy (normalized likelihood based on the test
data) for various reinforcement learning models and the RNN model.
The conventions are consistent with those in Fig.7. B Results of the
on-policy IDT check: Distribution of parameters estimated by fitting
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the FQ+C model to simulated choice data generated by the RNN. Com-
pared with those in Fig. 7, the distributions of the learning rate o and
choice trace decay parameter T were slightly broader, suggesting the
possibility that the RNN acquired a modest degree of IDT
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the computations of RNNs remain largely opaque, making
them fundamentally uninterpretable. In this regard, RNNs do
not serve as replacements for cognitive models, which explic-
itly describe cognitive processes. In computational cognitive
modeling, RNNs are considered to serve two primary roles.
The first is to identify behavioral patterns not captured by
the hypothesized cognitive models through simulations of an
RNN trained based on empirical data (e.g., detecting oscilla-
tory patterns in choice behavior; Dezfouli et al., 2019). Such
insights can contribute to the formulation of hypotheses about
necessary components in cognitive models. The second role
is to provide a benchmark for evaluating whether a candidate
cognitive model is sufficient or whether further refinement
is necessary, effectively determining how much refinement a
model requires.

Although the impact of IDT on the first role—discovering
behavioral patterns through simulation—was beyond the
scope of this study, our results on on-policy IDT check
confirmed that individual differences could be partially
reproduced in such on-policy simulations. This finding sug-
gests that IDT may also influence such behavioral insights. In
this paper, we mainly focused on the second role of RNNs and
argued that the IDT property of such RNN models might pro-
vide an unfair benchmark when assessing predictive accuracy
against that of theory-based cognitive models. In the follow-
ing section, we discuss the implications of our findings, the
influence of IDT in this context, and how researchers should
consider using RNNs in cognitive modeling moving forward.

Challenges in Comparing RNNs and Cognitive
Models in Terms of Predictive Accuracy

RNNGs are typically trained with a single set of parameters for
an entire population. Similarly, theory-based cognitive mod-
els are often fit using a single parameter set pooled across all
subjects (Dezfouli et al., 2019; Fintz et al., 2022; Eckstein et
al., 2024). This common approach is particularly convenient
in cross-validation settings, where the individuals in the train-
ing and test (or validation) sets differ, requiring reliance on
population-level summary statistics (Dezfouli et al., 2019;
Eckstein et al., 2024). In cognitive models, when parame-
ters are shared across the population, the model is essentially
incapable of adapting to individual differences—except in
special cases, which we discuss later. This lack of adaptabil-
ity gives RNNs a comparative advantage: When an RNN is
compared with a cognitive model fit with common param-
eters, the RNN may appear to perform better—not because
it captures cognitive processes more accurately but because
it is able to adapt to individual differences through its IDT
property. Consequently, even if the cognitive model has the
correct structural assumption, it may seem inadequate, giving
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the false impression that it lacks essential components and
requires further refinement.

Given that RNNs can express individual differences
through IDT, one natural approach might be to compare them
against cognitive models that also account for individual vari-
ability. This could be done by fitting models to individuals
separately or by using hierarchical models where individual
parameters are treated as random effects (Ahn et al., 2011;
Daw, 2011). However, as we have observed in simulations
with synthetic data, IDT does not perfectly capture individual
differences. Consequently, simpler cognitive models fitted at
the individual level may sometimes match or even exceed the
predictive accuracy of RNNs, potentially leading researchers
to overlook the need for further improvements in cognitive
models (cf. Figure 3A).

Interpreting RNN Benchmarks Under Uncertain IDT
Property

Given the uncertainty about the extent to which an RNN
exhibits IDT, the conclusions that can be drawn from using
RNNs as benchmarks are summarized in the following two
points: (1) If an individually fitted cognitive model under-
performs relative to an RNN, it suggests that important
components may be missing from the model (Fig. 4B). For
example, in Scenario 2a (Fig. 3A; when the Q-learning
model with asymmetric update was the ground truth), the
individual-fit FQ-learning model underperformed compared
to the RNN, indicating that it lacked the necessary cognitive
component. However, the converse is not true: if an indi-
vidually fitted cognitive model achieves predictive accuracy
comparable to that of the RNN, this does not necessarily
mean that the model is structurally sufficient. For example,
in Fig. 3A, the standard Q-learning model outperforms the
RNN when fitted individually, but this does not imply that the
model is fully adequate. This outcome could arise because
the RNN’s IDT is insufficient, preventing it from fully cap-
turing individual differences. (2) If a common-fit cognitive
model achieves predictive accuracy comparable to that of the
RNN (Fig. 40), it suggests that there may not be a signifi-
cantly better cognitive model in terms of predictive accuracy.
This situation is expected when individual differences are
negligible or when constraints prevent the RNN’s IDT from
functioning (e.g., in cases such as Fig. 3B, where no individ-
ual differences exist, the common-fit Q+A model and RNN
show similar predictive accuracies). However, if the RNN
itself does not sufficiently capture the true underlying pro-
cess, it cannot be assumed that the RNN represents the upper
bound of predictive accuracy.

As such, while the use of RNNs as benchmarks provides
a rough reference point, importantly, the conclusions drawn
from such benchmarks are inherently limited.
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Measuring the IDT Property in RNNs

As discussed above, for a fair comparison between RNNs
and cognitive models, it is important to assess the extent to
which the IDT property enhances the predictive accuracy. In
this study, we examined a method to check for the presence
of IDT using on-policy simulation (cf. on-policy IDT check).
Specifically, we generated choice data from the trained RNN,
fitted a cognitive model to the simulated data, and evaluated
the distributions of the estimated parameters.

However, this method has several limitations. It is effec-
tive only when the individual differences encoded via IDT
are stably maintained during the simulation. If the effective
parameters fluctuate substantially, the resulting parameter
estimates may not be meaningful. Moreover, the stability of
the estimated parameters can rely heavily on the choice of
cognitive model used for fitting. Additionally, the computa-
tional cost is substantial. On a standard laptop CPU, a single
IDT check for one RNN requires several hours of compu-
tation. Therefore, the development of a more efficient and
lightweight method for assessing IDT remains an important
direction for future research.

Challenges in Suppressing IDT

Two strategies have been explored to suppress IDT, but nei-
ther has proven fully effective. One approach is to stop
training early (e.g., Fig.5). While this approach can some-
times prevent IDT from being acquired, the appropriate
stopping point is often unclear. Stopping too early may result
in an RNN that fails to learn even the basic common cognitive
processes, potentially performing worse than a common-fit
cognitive model does. In our simulations, the RNN tended to
learn group-level cognitive processes first, followed by adap-
tations to individual differences. However, this order may
not always hold and likely depends on the model and task,
suggesting that early stopping must be evaluated on a case-
by-case basis.

Another strategy is to reduce the number of RNN units.
Although this approach was expected to suppress IDT, we
found that even with only two units, IDT still emerged. Thus,
reducing the number of units may not be an effective solution.
Similarly, using a linear activation function made the acqui-
sition of IDT less likely. In this setting, the RNN was able
to replicate the input—output mapping of an FQ-learning
model but failed to capture the behavior of the standard
Q-learning model when it served as the ground truth. This
finding suggests that linear RNNs lack the flexibility to model
more complex behavioral patterns. In such cases, using an
RNN provides no clear advantage.

Reducing the number of trials per session is another poten-
tial approach. Since IDT depends on past behavior, shorter
sessions may make it more difficult for the RNN to acquire

IDT. Evidence of this effect was observed using the Sugawara
and Palminteri datasets. However, this strategy requires an
experimental design with short sessions and multiple con-
texts, which is not always feasible. Once data collection is
complete, it is difficult to apply this approach retrospectively
through post hoc analyses.

Overall, it appears difficult to suppress IDT without com-
promising the RNN’s ability to capture common cognitive
processes. Furthermore, cognitive models with common
parameters do not always accurately capture representative
behavioral patterns across individuals. For example, if par-
ticipants exhibit opposing asymmetries in learning rates,
averaging across individuals could falsely suggest symmetry,
thereby masking meaningful individual-level structures.

Future Directions: Expanding RNNs to Better
Represent Individual Differences

As discussed above, suppressing IDT through a single
method may not always be feasible. Rather than focusing on
eliminating IDT, exploring ways to explicitly model individ-
ual differences within RNNs may be more productive. Neural
network architectures that aim to explicitly model individ-
ual differences via RNNs have been proposed (Dezfouli et
al., 2019; Song et al., 2021). For example, the encoder—
decoder architecture developed by Dezfouli et al. (2019)
involves an encoder that maps an individual’s behavioral data
onto a low-dimensional latent space representing individual-
specific characteristics. These latent variables are then passed
through a decoder, which outputs the connection weights of
an RNN. The resulting RNN models the individual’s behav-
ior and can be used to predict future actions. The results
obtained by Dezfouli et al. (2019), both in simulations using
synthetic data and in applications to real behavioral data,
were promising. However, as we demonstrated in the present
study, RNNs may themselves acquire the ability to represent
individual differences via IDT. This raises the possibility that
individual variability could be encoded directly within the
RNN itself, potentially bypassing the intended role of the
latent variables. Whether such latent variables can reliably
capture individual differences across a wide range of condi-
tions remains an open question.

The development of RNN-based models that can explic-
itly and sufficiently represent individual differences, whether
through latent variables or alternative mechanisms, is an
important direction for future research.

Tracking Within-Subject Parameter Variability
In this study, we interpreted the RNN’s ability to dynamically
adjust effective parameters such as the learning rate within

a session—through in-context learning—as a form of adap-
tation to individual differences. However, it is also plausible
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that parameters vary within individuals over time, and as
demonstrated in Appendix D, RNNs are capable of track-
ing such changes. This ability may be more appropriately
described as individual state tracking rather than IDT.

Ultimately, such within-subject variability may be bet-
ter modeled explicitly within cognitive models. Indeed,
numerous cognitive models have been proposed that allow
parameters such as the learning rate or inverse temperature
to change during task performance. Some of these models
assume stochastic fluctuations introduced by noise (Same-
jima et al., 2005; Ito & Doya, 2009; Findling et al., 2019),
whereas others define specific rules governing the temporal
dynamics of parameter change (Yechiam et al., 2005; Bai et
al., 2014; Piray & Daw, 2024).

When RNNSs outperform cognitive models with stationary
parameters, it may indicate that such within-subject param-
eter dynamics are relevant, and incorporating them into the
cognitive model could lead to improved explanatory power.

The Boundary Between IDT and Within-Subject
Cognitive Processes

Throughout this paper, we have implicitly assumed that the
components described in cognitive models (i.e., RL models)
are intended to reflect cognitive processes within individuals,
whereas in-context adaptation by RNNs reflects individ-
ual differences and is thus conceptually distinct from these
cognitive processes. While this distinction is clear at the def-
initional level, the boundary between them is often uncertain
in practice. Some mechanisms expressed in cognitive models
may themselves be interpreted as forms of in-context adapta-
tion to individual differences. For example, choice hysteresis
in RL models (Eq.7 in Appendix A.2) can be viewed as
a form of in-context adaptation, in which a latent variable
tracks past choices and influences future decisions. In some
cases, choice hysteresis may genuinely reflect within-subject
cognitive dynamics; in others, it may simply serve to capture
stable individual differences.

Consider a situation in which an RL model assumes no
initial bias in choices (i.e., identical initial Q-values for both
options), but some participants exhibit strong initial prefer-
ences. In such cases, incorporating a choice hysteresis effect
can improve the predictive accuracy by accounting for this
bias. For example, if a participant consistently selects option
B from the beginning, a model with choice hysteresis may
predict continued selection of option B. When these initial
biases differ across individuals, such in-context adaptations
effectively capture individual differences—implying that the
RL model itself has an IDT property.

Thus, whether a mechanism in a cognitive model consti-
tutes IDT depends on both the structure of the model and the
nature of the underlying process. Researchers must therefore
be explicit about which components they regard as part of
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the cognitive process and how these components are imple-
mented in the model.

Moreover, in the presence of model misspecification,
mechanisms defined as cognitive components may, in effect,
serve the role of IDT. Awareness of this possibility is cru-
cial when interpreting modeling results. For example, in the
situation described above, one could address the issue by
including a free parameter for initial choice bias or allowing
initial Q-values to vary across participants (e.g., Zhu et al.,
2025).

Conclusion

We have examined how the ability of a single RNN to adapt
to individual differences affects its predictive accuracy as
a benchmark for cognitive models. The impact of this IDT
property is likely to vary depending on multiple factors, such
as the design of the behavioral task, the magnitude of individ-
ual differences, and the assumed cognitive model structure,
making it difficult to establish general guidelines. At present,
researchers should be aware of this property when using
RNNs for behavioral modeling. Further understanding of the
IDT property and other characteristics of RNNs is needed,
along with continued efforts to harness these properties to
make RNNs a more useful tool in computational cognitive
modeling.

Appendix A: Methods
A.1 Task Settings for Simulations

We simulated the choice behavior of 100 agents (virtual sub-
jects) on a two-armed bandit task via various RL models
with parameters (e.g., learning rate) that were systematically
varied.

In the two-armed bandit task used for the simulations, one
option was associated with a high reward probability, 0.7,
whereas the other option was associated with a low reward
probability, 0.3. At each trial r (where ¢ denotes the trial
index), a reward was given (r; = 1) based on the probabil-
ity associated with the chosen option; otherwise, no reward
was given (r; = 0). After each 50-trial block, the reward
probabilities of the two options were reversed. For each trial,
whether a reward was available for each option was prede-
termined according to these probabilities. Although the same
reward sequence was used across agents, different sequences
were used for the training and test data. In all the simulations
conducted in the present study, each agent completed two
sessions of 200 trials, resulting in three reversals per session.
One session was used as training data for the RNN and RL
models, whereas the other session was used as test data to
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evaluate the predictive accuracy. All simulations were imple-
mented in Python (version 3.12.1).

A.2 Reinforcement Learning (RL) Models

Here, we first provide the general formulation of the variants
of the Q-learning model considered in the present study. This
model includes various additional components (in addition to
the standard Q-learning model), such as an asymmetric learn-
ing rate, forgetting rate, and choice autocorrelation (choice
hysteresis). Specific reduced models are derived from this
general formulation by decreasing or fixing the parameters.

The Q-value or action value, Q;(a;), for the chosen option
a; € {A, B} attrial ¢ is updated as

Oii1(ay) = { O (ar) +05+(Vt = O¢(ay)) ifry — Qs(a;) =0
s O:(ar) + o (rr — Qi(ar) ifre — Qr(ar) <0’

)

where o € [0, 17and @~ € [0, 1] are the learning rates that
determine how the model updates the Q-value depending on
the sign of the RPE, r; — Q;(a;). The initial Q-values are set
to zero (i.e., Q1(A) = Q((B) = 0).

The Q-value for the unchosen option a; € {A, B} is
assumed to decay as follows:

Oit1(a) = (1 —arp)Qiar), (6)

where aF is the forgetting rate, which determines the rate at
which the value of the unchosen option decays.

To model the effects of choice history (choice hysteresis),
the choice trace (or choice kernel) C, (i), which determines
how frequently option i has been chosen recently, is com-
puted as follows (Wilson & Collins, 2019):

Cip1() =1 =0)C () +tl(ar =), (N

where the indicator function /() is 1 if the statement is true
and O if the statement is false. The initial values are set to
zero, i.e., C1(A) = C1(B) = 0. The parameter t € [0, 1] is
the decay rate of the choice trace.

The choice probability (for option A) is determined by the
softmax function:

1

14 exp (=B(Q:(A) — Q:(B)) + ¢(Ci(A) — Ct(B)E%;')

The parameter B € [0, 00) is the inverse temperature, which
indicates how sensitively the choice probability changes with
the value difference between options. A larger § results in a
more sensitive change in the choice probability. The choice
trace weight ¢ € (—o00, 0c0) controls the tendency to repeat
(when¢ > 0)oravoid (when¢ < 0)recently chosen options.

P(a; =A) =

Since the model involves only two options, the choice proba-
bility for option B is given by P(a; = B) = 1 — P(a; = A).

First, we consider six variants of Q-learning models with-
out forgetting (o = 0). The standard Q-learning model
(Q-model) assumes symmetric learning rates, v = o~ =
o, and does not include a choice autocorrelation factor
(p = 0). The Q+C model extends the Q-model by incor-
porating a choice trace component, allowing ¢ and t to be
estimated as free parameters while still assuming symmetric
learning rates. The Q+A model introduces asymmetric learn-
ing rates, allowing a™ and o~ to differ, but does not include
a choice trace component (¢ = 0). The Q+CA model com-
bines both features, allowing asymmetric learning rates and
including a choice trace mechanism.

In addition, we consider forgetting versions of the Q-
learning model, termed FQ and FQ+C. These models are
equivalent to the Q and Q+C models, respectively, but the
forgetting rate o is equal to the learning rate .

The parameters of the ground-truth RL models used to
generate the data are provided in the captions of the corre-
sponding figures.

A.3 Fitting Reinforcement Learning Models

We fitted RL models to synthesized and empirical choice
data using two approaches: common parameter fitting and
individual parameter fitting (hereafter referred to as “com-
mon fit” and “individual fit,” respectively). In the common
fit approach, we assumed that all the subjects share the same
parameter values and thus estimated a single set of parame-
ters for the entire dataset via maximum likelihood estimation,
where the parameters were optimized by minimizing the total
negative log-likelihood across all subjects. In contrast, in
the individual fit approach, we allowed model parameters
to vary across subjects and fitted them separately for each
subject using maximum a posteriori (MAP) estimation. This
method combines the log-likelihood of the data with prior
distributions over the parameters, providing regularization
and improving estimation stability, especially when the num-
ber of trials per subject is limited (Katahira, 2016).

To account for individual differences in parameters, one
can either maximize the likelihood for each individual or
use hierarchical models that estimate both individual-level
parameters and group-level distributions (Daw, 2011). In the
present study, we adopted MAP estimation (as in Palminteri
et al. (2017); Sugawara and Katahira (2021)). While hierar-
chical modeling generally yields more accurate parameter
estimates, it typically requires computationally intensive
procedures such as Markov chain Monte Carlo (MCMC)
sampling (Ahn et al., 2011) or the expectation—maximization
(EM) algorithm (Huys et al., 2011). These procedures can
be time-consuming, especially when performing systematic
simulations. Moreover, hierarchical models can be sensitive
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to the prior distributions and model specifications. In some
cases, strongly informative priors may lead to excessive
shrinkage, resulting in unstable estimates and requiring addi-
tional effort for model tuning (Sumiya & Katahira, 2020).
Maximum likelihood estimation, which does not rely on prior
assumptions, tends to produce larger estimation errors and
generally yields lower predictive accuracy than MAP estima-
tion does. When weakly informative priors are used, MAP
estimation can achieve predictive performance comparable to
that of fully hierarchical Bayesian models (Katahira, 2016).
Therefore, the results obtained using MAP estimation can be
expected to approximate those of hierarchical models.

We used the same prior distribution as that used in Sug-
awara and Katahira (2021), which follows that in Palminteri
et al. (2017). Specifically, the learning rate parameters were
assigned Beta(1.1, 1.1) priors (either symmetric o or asym-
metric o and &™), the inverse temperature parameter 8 was
given a Gamma(1.2, scale = 5.0) prior, and the choice trace
weight ¢ was assigned a Gaussian prior N'(0, 0% = 5).
The decay parameter of the choice trace t was, if included,
also assigned a Beta(l.1, 1.1) distribution. If the initial
Q values were treated as free parameters, uniform priors
over [0, 1] were implicitly imposed via bounded optimiza-
tion. For both approaches, we employed the sequential least
squares programming (SLSQP) algorithm, implemented in
the scipy.optimize.minimize function from the
Python SciPy package, to perform constrained optimiza-
tion with five random initializations to avoid local minima.

A.4 RNN Architectures

The RNN architectures examined in this paper consist of
an input layer that receives the action and reward at trial
t — 1, an output layer that generates the choice probability
for trial 7, and an RNN layer in between (Fig. 9). This struc-
ture is standard in previous studies that have used RNNs to
model RL processes (e.g., Dezfouli et al., 2019), except for

Input layer

At trial t-1,
option A was chosen
and yielded a reward

Choice-dependent
reward coding

the method of coding the reward in the input layer, which
will be described below.

Input Layer

The input to the network at trial ¢ is represented by the four-
dimensional vector

ar—1,1

ai—1,2
- . )
rr—1,1

Fi—12

X; =

Here, a;_ is a one-hot vector such that if option A is chosen,
the first element, a,—1,1, is 1, and the second element, g, _1 2,
is 0. If option B is chosen instead, a,—1,; = O0anda,—12 = 1.
r—1 is a vector defined as follows: if the i-th option is chosen
at trial # — 1, the i-th element, 7,1 ;, has a reward value of
ri—1. The j-th element corresponding to the unselected j-th
option is set to zero. This reward coding scheme is referred
to as choice-dependent reward (CDR) coding.

Many existing studies input the reward value r; as a sin-
gle scalar value, regardless of the choice. This is referred to
as choice-independent reward (CIR) coding. In CIR coding,
the network needs to learn the interaction between reward
and choice, whereas in CDR coding, this is not necessarily
needed, which makes training more efficient. Additionally,
as demonstrated in Appendix C, CDR coding allows a linear
RNN to be equivalent to an FQ-learning model.

RNN Layer

In this study, we primarily used a gated recurrent unit (GRU;
Cho, 2014) as the recurrent layer of the RNN for the following
reasons. GRUs offer a simpler architecture than long short-
term memory (LSTM; Hochreiter, 1997) while achieving
comparable performance. Unlike LSTMs, which maintain

Output (softmax)
layer

RNN layer

Fig.9 Schematic diagram of RNN models. The input consists of choice
and reward information from the previous trial, with choice represented
via one-hot encoding and reward coded via choice-dependent reward
coding. These inputs are fed into an RNN layer with recurrent con-
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nections, where they are integrated with past history data before being
passed to the output layer. In the output layer, the probability of selecting
each option is computed via the softmax function
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two latent states per unit, GRUs use only a single latent vari-
able per unit. Although LSTMs were initially used to model
reward-based choice behavior (Dezfouli et al., 2019), GRUs
have become more commonly used in recent work (Ger et
al., 2024a,b). Simpler architectures such as the vanilla RNN
have also been applied to choice modeling, but they suffer
from slow convergence (see Appendix B).

We also considered a further simplified variant, a lin-
ear RNN, as a point of comparison. The definitions of each
recurrent unit type—vanilla RNN, linear RNN, LSTM, and
GRU—are provided below, in that order.

Let N, denote the number of units in the RNN layer.

Vanilla RNN In the vanilla RNN, the internal state vector
h; (an Nj-dimensional vector) is updated, and the output is
calculated as follows:

h; = tanh(Wx; + Uh,_1 + by). (10)

Here, the function tanh(-) is the hyperbolic tangent activation
function, which introduces nonlinearity to the model. The
matrix W, which has dimensions N}, x 4, is the weight matrix
that is applied to the input x,, while U is the weight matrix,
with dimensions Nj, x Np, applied to the previous latent
state h,_;. The vector by, which is Nj-dimensional, is the
bias associated with the latent state.

Linear RNN The linear RNN is obtained by replacing the tanh
function in Eq. (10) with the identity function as follows:

h, = Wx; + Uh,_; + b, an

GRU In GRU (Cho, 2014), the internal state vector h; is
updated as follows:

7, =0(W;x; + U;h;_1 +b,), (12)
r,=o0W,x; +Uh,_; +Db,), (13)
h; = tanh(W;,x; + Uy, (r, © h,_1) + by), (14)
h,=(-2)0h_;+270h, (15)

where z, is the update gate, r, is the reset gate, h, is the candi-
date latent state, o is the sigmoid function, and © represents
elementwise multiplication.

LSTM The LSTM (Hochreiter, 1997) update equations are
as follows:

f; =U(WfX,~|—Ufh,,1 —i—bf), (16)
i = o (Wix; + Uih; 1 +b;), (17)
o, = (Wox; +Ush, 1 +by), (18)

él = tanh(W¢x; + Uch,_1 + b.), (19)
¢=F0o0¢ 1+i 06, (20)
h[ = 0y ® tanh(cl‘), (21)

where ¢,_ is the cell state from the previous time step, f; is
the forget gate, i; is the input gate, o; is the output gate, and
¢, is the candidate cell state

In all the RNN models, the number of latent units was
generally fixed at 10 because increasing the size beyond this
point did not result in notable improvements in prediction
accuracy (see Appendix B).

Output Layer

In the output layer, the state of the RNN layer, hy, is linearly
transformed as follows:

Y = Wyht + by. (22)

Here, y, is a 2-dimensional vector representing the output
for the two possible choices, and by, is a 2-dimensional bias
vector. The matrix Wy, is an 2 x Nj matrix that linearly
transforms the latent state h;.

The choice probability of option A is then determined via
the softmax function:

P(a, =A) = (23)

1+exp (= [y —yi2])

Here, y, ; denotes the i-th element of the vector y;.
Loss Function Used for Training RNNs

Categorical cross-entropy was employed as the loss function,
which corresponds to maximum likelihood estimation. For
a given target choice label af (where s indexes the subject)
and the predicted choice probabilities Ppreq(a;) for options
A and B, the loss is defined as:

Lcg = —[I(a) = A)log (Pyrea(a; = A))
+ I(a; = B)log (Pprea(a; = B)) |, (24)

where /() is the indicator function. All subjects’ data were
used as a single batch during training.

A.5 Implementation and Training of the RNN Models

The vanilla and linear RNNs were constructed using the
SimpleRNN class from Keras implemented in TensorFlow
(version 2.16.1). Similarly, the GRU and LSTM models were
built using the GRU and LSTM classes.

To train the networks, the adaptive moment estimation
(Adam) optimizer was used with a constant learning rate
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of 0.001. Additionally, gradient clipping with clipnorm
= 0.001 was applied during training. Gradient clipping
ensures that the norm of the gradient does not exceed the
specified threshold (here, 0.001), preventing exploding gra-
dients.

The number of training iterations was generally set to
3000. During training, network weights were saved every 100
steps. For simulations using synthetic data, where the ground-
truth choice probabilities were known, the Kullback-Leibler
(KL) divergence between the true and model-predicted
choice probabilities was computed at each checkpoint. The
weights corresponding to the minimum KL divergence were
selected, and the RNN with those weights was used as the
final model.

For real-world data, we selected the model weights that
yielded the lowest cross-entropy loss on the test set, and used
the corresponding model as the final output.

Ideally, a separate validation dataset, independent of both
the training and test datasets, should be used to determine the
optimal number of training iterations (Eckstein et al., 2024).
However, given the limited number of subjects in the datasets,
we adopted this simplified approach. As a result, we used the
models trained for 200 iterations for the Sugawara dataset,
300 iterations for the Palminteri dataset, and 1200 iterations
for the Waltmann dataset, corresponding to the training step
at which the lowest loss based on the test data was achieved.

A.6 Performance Metrics

When the ground-truth choice probabilities are available
(i.e., when synthetic data are used), the model’s fit can be
evaluated by measuring the distance between the model’s pre-
dicted choice probabilities and the true probabilities. First,
we denoted the choice at trial ¢ of subject s as a;. To quan-
tify the difference between the choice probabilities of the
true model Pye(a;) (generated by RL models) and the pre-
dictions from the RNN model Ppred(a;), we computed the
KL divergence. Given that the probability distributions in
our case are Bernoulli distributions (i.e., binary choices), we
calculated the KL divergence for a] as follows:

In real-world behavioral data analysis, the ground truth
is unknown. In such cases, model performance cannot be
evaluated using metrics such as KL divergence. Instead,
it is commonly assessed based on predictive accuracy on
held-out test data. Specifically, we computed the normalized
log-likelihood (Ito & Doya, 2009) on the test data, or trial-
wise prediction accuracy (Eckstein et al., 2024), defined as
follows:

T,
1 &

Normalized likelihood for subject s = exp (T Z log(Ppred(af))>
5 r=1

(26)

Here, 7 denotes the number of trials in the test set for subject
s.

We performed paired t-tests using the normalized log-
likelihoods to compare the predictive performance of the
RNN and each RL model. If the RL model showed signif-
icantly lower predictive accuracy than the RNN did at the
5% significance level, we considered that the RL model had
room for improvement. Since our goal was not to control for
familywise error but to evaluate each model individually as a
benchmark comparison, we did not apply any correction for
multiple comparisons.

A.7 On-Policy IDT Check

To examine whether a trained RNN has acquired the IDT
property, we introduced the on-policy IDT check, which
involves simulating the RNN as an agent to generate choice
data (a process referred to as on-policy simulation or closed-
loop simulation), fitting a cognitive model to the generated
data, and examining the distribution of estimated parameters.

Specifically, we first defined the RL model parameters
for 100 hypothetical agents, ensuring that these parameters
span a broad range of plausible values for each parameter:
o parameters and t are sampled uniformly from [0.1, 0.9],
B from [1.0, 4.0], and ¢ from [—2.5, 2.5]. When multiple
candidate RL models can be considered, we selected the one
with the highest predictive accuracy for use in this procedure.
Each agent performed a two-armed bandit task for 50 trials,

KL(Ptrue(a?)”Ppred(a?)) :Ptrue(atx = A)log <

Ptrue(azs =A)+e )
Ppred(afv =A)+e
1 — Ppyela; = A) +¢

+ 1 - Ptrue(ats =A)) log(

5 ) : (25)
1 — Ppred(a; = A) + €

where € is a small constant (set to 10719) added to avoid
division by zero or taking the logarithm of zero. The KL
divergence is averaged across all subjects and trials. To
reduce the computation time, KL divergence was computed
once every 10 training iterations.

@ Springer

generating 100 sessions of behavioral data. These data were
then used to update the RNN states for each session through
off-policy simulation, allowing the RNN to encode individual
characteristics as latent variables.
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Next, we used each session-specific RNN state to simulate
5000 trials of a two-armed bandit task in an on-policy manner,
where choices were sampled according to the model’s pre-
dicted choice probabilities. If the RNN successfully encoded
individual differences via latent variables and maintains them
stably, the generated 5000-trial data for each session should
reflect the corresponding agent’s characteristics.

To evaluate this, we fit an RL model to each session’s
5000-trial data using maximum likelihood estimation. Since
the initial 50 trials in the off-policy simulation may intro-
duce biases in early choices—specifically, differences in the
initial Q-values between options—we accounted for this by
allowing the initial Q-values to be free parameters in the
fitting procedure. Finally, we examined the estimated param-
eter distributions (e.g., learning rates) across the 100 sessions
using histograms. If the recovered distribution covered a wide
parameter range, we inferred that the RNN has acquired IDT.
Conversely, if the estimated parameters were narrowly con-
centrated around a single value, we concluded that IDT was
not acquired.

A.8 Real-Word Data
Sugawara data and Palminteri Datasets

In the experiments by Sugawara and Katahira (2021) and
Palminteri et al. (2017), two feedback conditions were
included: a factual condition, where participants were only
shown the outcome (rewarded or not rewarded) of the cho-
sen option, and a counterfactual condition, where they also
received feedback on the unchosen option. Here, we focused
exclusively on the factual condition, which aligns with the
paradigms considered in the previous sections.

In both conditions, trials from eight contexts (i.e., stimulus
pairs) were presented in an intermixed manner, with four con-
texts appearing in the first session and the remaining four in
the second session. Each session included one “Symmetric,”
one “Reversal,” and two “Asymmetric” contexts, resulting in
a total of eight stimulus pairs across the two sessions.

Each context was associated with one of three reward
probability conditions: In the Symmetric condition, both
options had a reward probability of 50%. In the Asymmetric
condition, one option had a reward probability of 75% and
the other 25%. In the Reversal condition, one option had a
reward probability of 83% and the other 17% for the first 12
trials, after which the reward probabilities were reversed for
the final 12 trials. Each stimulus pair (context) was presented
across 24 trials, resulting in a total of 96 trials per session and
192 trials across the two sessions.

By splitting the dataset into two sets of four contexts, we
were able to perform cross-validation at the session (context)
level. Specifically, Contexts 1 and 3 (first session) and 6 and

8 (second session) were assigned as training data, whereas
Contexts 2 and 4 (first session) and 5 and 7 (second session)
were used as test data. This assignment ensured that each of
the training and test sets included an equal number of contexts
from each of the three reward probability conditions.

The Sugawara dataset included 143 participants (58
females; mean age = 38.7 years, SD = 9.6), and the exper-
iment was conducted online. In contrast, the Palminteri
dataset consisted of 20 participants (mean age = 23.9, SD
= 0.7), and the experiment was conducted in a laboratory.
Unlike the original experiment by Palminteri et al. (2017),
Sugawara and Katahira (2021) imposed a 1500 ms response
time limit. Trials with missed responses were excluded, and
the remaining trials were concatenated for analysis. Among
the 143 participants, 10 had at least one missed response, with
the number of misses ranging from 4 to 12 (mean = 5.5),
Thus, a total of 55 trials were missed across all participants.

Waltmann Dataset

In a study by Waltmann et al. (2022), 40 participants (20
males; age = 26.4543.88) completed a probabilistic reversal
learning task, which is one specific version of the two-armed
bandit task, across two sessions, approximately 1 week apart.
All the sessions were conducted in a laboratory setting. Each
session consisted of 160 trials in a two-armed bandit setting.

In the first 55 trials of each session, one option was asso-
ciated with a high reward probability (80%), and the other
was associated with a low probability (20%). After trial 55,
reward contingencies reversed five times (at trials 55, 70, 90,
105, and 125).

In the present study, we treated the first session as the
training data and the second session as the test data. While the
second session may be affected by practice effects (Karvelis
et al., 2023), we did not attempt to control for or model such
effects here.

Appendix B: Comparison of RNN
Architectures

Here, we investigated whether the IDT property, which was
demonstrated with the GRU model in the main text, can also
be observed in other RNN architectures commonly used as
models for human and animal RL, such as the LSTM and
the vanilla RNN models. LSTM models, like GRU models,
are designed to retain information from distant past histories
more effectively, so we expected to see similar behavior in
terms of the IDT property. On the other hand, the vanilla RNN
simply applies a nonlinear and monotonic tanh function to
the latent units of the linear RNN. It is not obvious whether
the IDT property would emerge in the vanilla RNN.
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Since the learning speed might differ between RNN archi-
tectures, we plotted the KL divergence between the true
choice probability and the model’s prediction as a function
of the number of training iterations. We also examined the
sensitivity to initial conditions by generating multiple learn-
ing curves from eight randomly initialized network weights
while using the same dataset. The number of iterations was
set to 2000 for all the RNN models except for the vanilla
RNN. For the vanilla RNN, which exhibited significantly
slower convergence, training was repeated for 8000 itera-
tions, and the results were plotted across the full range of
iterations. The number of latent units in all the RNNs was set
to 10.

Figure 10 shows the results for the same data in Fig. 1
(the ground-truth model is the FQ-learning model with an «
value of either 0.1 or 0.9). The KL divergence for the linear
RNN converged to approximately 0.05, which we interpreted
as the lower bound in the non-IDT mode. For the GRU,
the KL divergence ultimately converged toward the IDT
mode, approaching 0. However, it exhibits a phenomenon
where the KL divergence temporarily remains at approxi-
mately 0.05—indicating that the model remains in anon-IDT
mode—before suddenly dropping into the IDT mode. This
behavior, commonly observed in multilayer neural networks,
is referred to as the plateau phenomenon (Fukumizu &
Amari, 2000).

For the LSTM model, the near KL = 0 region was reached,
indicating the IDT mode, and a plateau phenomenon was
observed. However, the convergence speed was relatively
slower than that of the GRU, and the degree of dependency on
the initial weights was stronger than that of the GRU. Addi-
tionally, even after convergence, instability was observed,
with multiple temporary spikes where the KL divergence
increased.

The vanilla RNN requires much more time to converge.
Notably, only the vanilla RNN panel extended up to 8000
iterations, exceeding the number of iterations of the other
models. Eventually, the KL divergence approached the region
near 0. This finding suggests that even the vanilla RNN is able
to reach the IDT mode, but doing so requires many iterations.

Figure 11 shows how the number of GRU units affects
the learning curves of an RNN. When the model con-
tained only a single GRU unit, the KL divergence remained
around 0.05, corresponding to the upper bound of the no-IDT
mode. As the number of units increased, the KL diver-
gence decreased below this threshold, indicating that the
model began to acquire the IDT property. Notably, mod-
els with more GRU units tended to converge more quickly,
regardless of initialization. This outcome is likely because
a larger number of weights increases the probability of
randomly initializing a configuration that is close to an opti-
mal solution, consistent with the “lottery ticket hypothesis”
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Fig. 11 Comparison of the learning curves across different numbers of
GRU units. The number of GRU units was varied as follows: 1, 2, 3, 5,
10, and 20. The KL divergences between the true model and RNN were
plotted. When the KL divergence was below 0.05 and approached zero,

(Frankle & Carbin, 2018). Although near-optimal solutions
were achieved with approximately five units, models with
approximately ten units converged more reliably and rapidly.
Since increasing the number of units beyond ten yields min-
imal additional benefit, we used ten GRU units as the default
configuration in the main analyses.

Appendix C: Equivalence Between
the FQ-learning and Linear RNN Models

Here, we demonstrate that the FQ-learning and linear RNN
models can be equivalent in terms of their input—output
relationships by showing the correspondence between their
respective parameters.

First, from Eq. (3), the choice probability in FQ-learning
is expressed via the difference between the two Q-values,
AQ; = Q:(A) — Q:(B), as follows:

1

Pl =4 = Cpaoy

27

The update rule for the FQ-learning model (Egs. (1) and (2))
can be rewritten as follows:

0:1(A) = Qi—1(A) + all(a;—1 = A)ri—1 — Qi1-1(A)),
(28)

0:(B) = Q1-1(B) + a(l(a;—1 = B)ri—1 — Q1-1(B)).
(29)

Training iteration

Training iteration

the model was considered to have entered the IDT mode. The results
from ten different random initializations of network weights are over-
laid in different colors. The simulation settings were identical to those
used in Fig. 1B

Here, the indicator function 7 (-) is 1 when the expression
inside is true and O otherwise. By subtracting the terms in
Eq. (29) from Eq. (28), we obtain

AQir=(1—a)AQs—1 +all(a—1=1) = I(a;—1=2))ri—1.
(30)

Now, we consider a linear RNN with a single latent unit
(N = 1). In this case, h; becomes a scalar, which we denote
h;. We demonstrate that i, can correspond to the variable
A Q;, with appropriate weights assigned to the linear RNN.
If we assume thatb, = 0,b;, = 0, we can write the equations
as follows:

hy = WpX; +uphy (3D
y: = Wyht (32)

The input (for choice-dependent reward coding) can be
expressed as follows:

CNlt—l,l I(a;—1 = A)
ar-1,2 I(a;—1 = B)
X, =|. 33
o | T 1@ = Ay (53)
Fi—1,2 I(a;—1 = B)ri—y

We further assume that the weight matrix W has
nonzero values only for the components corresponding to 7,
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specifically set to o, —« for the respective options:

W, =[00a —a]. (34)

Suppose that u, = 1 — «; then, Eq. (31) becomes

hy =1 —a)hi—1 +a(l(a—1 = A) — I(ar—1 = B))ri—1.
(35)

This formulation is equivalent to replacing A Q; with h;
in Eq. (30).

If the weight for the output layer is Wy, = [, 017 (where
T denotes the transpose), y;,1 — ¥:.2 in Eq. (23) becomes
Bh;, confirming that this linear RNN yields an equivalent
output (choice probability) with the FQ-learning model; if
the initial value of &;, h; is the same as that of A Q; (this is
the case if hy = 0 and Q;(A) = Q1(B)).

There is ambiguity in the weights of the linear RNN, and
there are infinitely many models that can be equivalent to
the FQ-learning model. For example, models with W, =
[0.58, —0.58]17 produce the same output. When there are
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Fig. 12 Tracking within-subject changes in the learning rate by the
RNN. A A case where the RNN was trained based on data with a
constant learning rate and tested using data with a switching learning
rate. The RNN was trained based on simulated data with agents whose
learning rate o remained constant throughout the task (either « = 0.1 or
o = 0.9) and tested using data with agents whose learning rate switched
attrial 101 (from 0.1 to 0.9 on the left, from 0.9 to 0.1 on the right). B A
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two or more latent units, countless combinations of weights
exist that can yield behavior equivalent to that of the linear
RNN with a single latent unit.

Appendix D: RNNs Track Within-subject
Parameter Variability

As shown in Fig. 1B, the RNN appears to capture individual
differences during the initial trials and subsequently gener-
ates behavior that remains consistent with those differences.
However, in reality, parameters such as the learning rate may
also vary within individuals during the task (e.g., Behrens
et al., 2007; Browning et al., 2015). To examine whether
the RNN can also track such within-subject fluctuations in
parameters, we consider two cases: one in which the ground-
truth data used to train the RNN have constant learning rates
and another in which the ground-truth learning rate changes
during the task.

Figure 12A shows the predictions of an RNN trained
based on data from Scenario 1, where the true model is the
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case with both training and test sets containing learning rate switches.
The RNN was trained based on agents whose learning rate changed
within the task in the same manner as the test data. The orange lines
represent the RNN’s predicted choice probability, and the gray lines
show the ground-truth choice probability generated by the FQ-learning
model
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FQ-learning model and the learning rate (o) remains constant
throughout the task (either 0.1 or 0.9). In the test data, how-
ever, the learning rate switches after 100 trials (from o = 0.1
to 0.9 or vice versa). For agents whose learning rate changes
from 0.1 to 0.9, the RNN fails to track the change in «, con-
tinuing to produce behavior consistent with a slow learning
rate (left panel). In contrast, when « changes from 0.9 to 0.1,
the RNN gradually adapts and slows the rate of change in its
choice probabilities accordingly (right panel). These results
reveal an asymmetry in the RNN’s tracking ability: it can fol-
low transitions from fast to slow learning, but not the reverse,
when such transitions are not present during training.
Figure 12B shows the results when the RNN is trained
based on data that include the learning rate shift (from
o = 0.1t00.9 and vice versa). In this case, the RNN success-
fully tracks the changes in both directions, demonstrating that
RNNS can learn to adapt to within-subject changes in param-
eters when such patterns are present in the training data.

Supplementary Information  The online version contains supplemen-
tary material available at https://doi.org/10.1007/s42113-025-00254-
8.
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